

VITI RETTIFICATE DI PRECISIONE

Revisione 23.03 4 maggio 2023

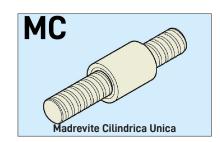
Scaravella F.lli s.r.l.

Azienda certificata

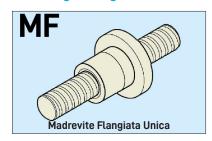
ISO 9001:2015

via Bentelli, 25 - 29121 PIACENZA (Italia) Tel. +39.0523.480192 - +39.0523.480121 Fax +39.0523.481334 email scaravella@scaravella.it

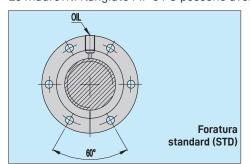
INDICE GENERALE

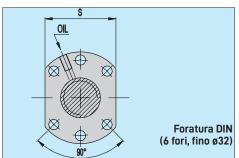

PREMESSA	
GUIDA RAPIDA ALLA CONSULTAZIONE DEL CATALOGO	P1
DATI TECNICI	
RIGIDEZZA STATICA E DINAMICA	
Rigidezza statica della vite	
Rigidezza statica della madrevite	
Rigidezza statica della zona di contatto delle sfere	
DEFORMAZIONI	
CALCOLO DELLA COPPIA APPLICATA	
CALCOLO DEI CARICHI E DELLA DURATA	
VITA OPERATIVA	3
Montaggio	3
Lubrificazione	
PRECARICO	5
SISTEMI DI SUPPORTO	6
CARICO A COMPRESSIONE	6
VELOCITÀ CRITICHE	7
Velocità critica della vite	7
Limite di velocità del sistema	8
PRECISIONE	8
TABELLE MADREVITI STANDARD	
MODALITÀ DI LETTURA DELLE TABELLE	10
MADREVITE CILINDRICA UNICA	
MADREVITE CILINDRICA UNICA PRECARICO INTERNO	
DOPPIA MADREVITE PRECARICATA (Cilindrica)	
MADREVITE FLANGIATA UNICA	
MADREVITE FLANGIATA UNICA PRECARICO INTERNO	34
DOPPIA MADREVITE PRECARICATA (Flangiata)	50

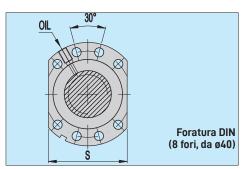
PREMESSA - Guida rapida alla consultazione del catalogo -


Le pagine seguenti contengono una serie di tabelle per una rapida individuazione delle madreviti a Catalogo organizzate per Tipo di madrevite (singola, precaricatao doppia), per tipo di foratura della flangia (DIN o STD, standard), diametro nominale (Dn), passo del filetto..

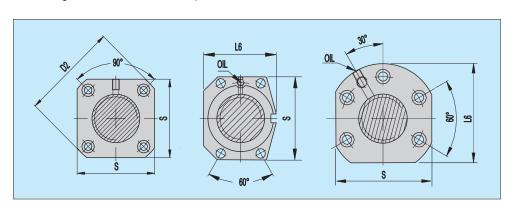
Madrevite Cilindrica Unica (MC), Madrevite Cilindrica Unica con Terminale Filettato (MCTF),

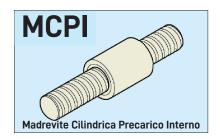

Flanged single nut (MF) and Central flange single nut (FC)

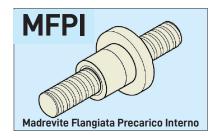


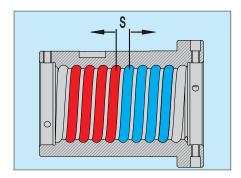


Le Madreviti MC, MF e FC sono costituite da un corpo unico nel quale è ricavato il filetto elicoidale di circolazione delle sfere e gli alloggiamenti per i rinvii per il ricircolo delle sfere. Sono fornite SENZA PRECARICO (gioco assiale medio 0,01 ÷ 0,02mm); a richiesta possono essere fornite a gioco "0" (zero)..

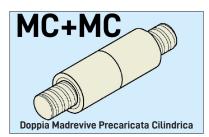

Le madreviti flangiate MF e FC possono avere foratura DIN o STD (standard)::




Possono essere realizzate flange con forma e foratura particolari su richiesta del Cliente.

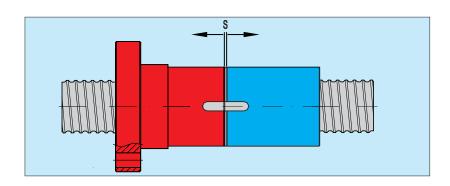


Madrevite Cilindrica Precarico Interno (MCPI) e Madrevite Flangiata Precarico Interno (MFPI)





Le Madreviti MCPI e MFPI sono costituite da un corpo unico nel quale è ricavato il filetto elicoidale di circolazione delle sfere e gli alloggiamenti per i rinvii per il ricircolo delle stesse. Per aumentare la rigidità dell'accoppiamento vite/madrevite il filetto della madrevite è realizzato con un "distanziamento - S" tra le due serie di ricircoli. L'entità dello sfalsamento determina il precarico richiesto..



Doppia Madrevite Precaricata Cilindrica (MC+MC) e Doppia Madrevite Precaricata Flangiata (MF+MC)

Le Madreviti Doppie MC+MC e MF+MC sono costituite da due madreviti accoppiate tra loro con interposizione di un distanziale. L'entità dello sfalsamento, cioè la misura "S" del distanziale, determina il precarico richiesto..

Tabella di ricerca veloce

N° GIRI SFERE	MC	MC+MC	MCPI	MF	MF+MC	MFPI	FC	MCTF	TIPO FORATURA
	Madrevite Cilindrica Unica	Doppia Madrevite Precaricata Cilindrica	Madrevite Cilindrica Precarico Interno	Madrevite Flangiata Unica	Doppia Madrevite Precaricata Flangiata	Madrevite Flangiata Precarico Interno	Madrevite Unica Flangia Centrale	Madrevite Cilindrica Unica con Terminale Filettato	FLANGIA
	Pag. 11							Pag. 9	
3				Pag. 17					STD
				Pag. 18					DIN
					ı	I		I	I
	Pag. 11								
4									STD
				Pag. 18					DIN
3				Pag. 18					DIN
	D 44			D 00					
2	Pag. II								STD
J									DIN
				1 ug. 21					DIIV
	Pag. 11							Pag. 9	
4	•			Pag. 18					STD
				Pag. 21					DIN
		Pag. 15	Pag. 14						
3+3					Pag. 50	Pag. 35			STD
						Pag. 34			DIN
	Pag. 11								
3				Pag. 19					STD
				Pag. 19					DIN
								Dog 0	
4				Pan 21				rdy. Y	DIN
	3 4 3 4 3+3	Pag. 11 3 Pag. 11 3 Pag. 11 3 Pag. 11 4 Pag. 11 4 Pag. 11 4 Pag. 11 4 Pag. 11 3 Pag. 11 Pag. 11	N° GIRI SFERE Madrevite Cilindrica Unica Pag. 11 A Pag. 11 A Pag. 11 A	N° GIRI SFERE Madrevite Citindrica Unica Pag. 11 A Pag. 11 Pag. 11 Pag. 15 Pag. 14	N° GIRI SFERE	N° GIRI Madrevite Cilindrica Doppia Madrevite Precaricata Cilindrica Precaricata Pag. 11 Pag. 17 Pag. 18	N° GIRI SFERE Madrevite Cliindrica Unica Pag. 11 Pag. 11 Pag. 11 Pag. 11 Pag. 11 Pag. 18 Pag. 11 Pag. 11 Pag. 18 Pag. 11 Pag. 11 Pag. 18 Pag. 11 Pag. 11 Pag. 18 Pag. 19 Pag. 19 Pag. 19 Pag. 19	N° GIRI	N° GIR Madrevite Clindrica Doppia Madrevite Precaricata Precaricata Precaricata Precaricata Precaricata Clindrica Doppia Madrevite Precaricata Precaricata Precaricata Precaricata Precaricata Precaricata Precaricata Precaricata Precaricata Pag. 17 Pag. 18 Pag. 18 Pag. 18 Pag. 18 Pag. 19 Pag. 20 Pag. 20 Pag. 21 Pag. 35 Pag. 34 Pag. 39 Pag. 30 Pag.

		MC	MC+MC	МСРІ	MF	MF+MC	MFPI	FC	MCTF		
DIAMETRO	N° GIRI									TIPO FORATURA	
PASS0	SFERE	SFERE	Madrevite Cilindrica Unica	Doppia Madrevite Precaricata Cilindrica	Madrevite Cilindrica Precarico Interno	Madrevite Flangiata Unica	Doppia Madrevite Precaricata Flangiata	Madrevite Flangiata Precarico Interno	Madrevite Unica Flangia Centrale	Madrevite Cilindrica Unica con Terminale Filettato	FLANGIA
		Pag. 11									
	3				Pag.s 18 - 19					STD	
					Pag. 22					DIN	
		Pag. 11									
	4				Pag.s 18, 19 and 20					STD	
					Pag. 22					DIN	
25 passo 5	5								Pag. 9		
			Pag. 15								
	3+3		i ay. is				Pag.s 36 - 38			STD	
							Pag. 37			DIN	
_			Pag. 15								
	4+4		ray. 13				Pag. 36			STD	
							Pag. 37			DIN	
25 passo 6	3+3						Pag. 38			DIN	
		Pag. 11									
	3				Pag. 19					STD	
					Pag. 21					DIN	
		Pag. 11							Pag. 9		
	4	r ag. 11			Pag. 19				1 49. 7	DIN	
25 passo 10					Pag. 19					STD	
						Pag. 51				STD	
	3+3					Pag. 51				DIN	
						Dog. 5 1				DIN	
	4+4					Pag. 51 Pag. 51				DIN STD	
25 passo 15	3				Pag. 19					STD	
		Pag. 11									
	2	- J			Pag. 19					STD	
25 passo 20					Pag. 19					DIN	
	2+2					Pag. 51				STD	

DIAMETRO	N° GIRI	MC	MC+MC	MCPI	MF	MF+MC	MFPI	FC	MCTF	TIPO FORATURA	
PASS0	SFERE	31 LIVE	Madrevite Cilindrica Unica	Doppia Madrevite Precaricata Cilindrica	Madrevite Cilindrica Precarico Interno	Madrevite Flangiata Unica	Doppia Madrevite Precaricata Flangiata	Madrevite Flangiata Precarico Interno	Madrevite Unica Flangia Centrale	Madrevite Cilindrica Unica con Terminale Filettato	FLANGIA
	3	Pag. 11									
		Pag. 11									
	4				Pag. 21					DIN	
					Pag.s 22 - 23					STD	
									Pag. 9		
	5				Pag. 21				10	DIN	
		D 44									
32 passo 5	6	Pag. 11			Pag. 22					DIN	
	U				Pag. 22					STD	
								I			
			Pag. 15	Pag. 14							
	3+3					Pag. 51	Pag. 40 Pag. 41			STD DIN	
							1 ug. 41			DIN	
			Pag. 15				Pag. 42				
	4+4					Pag. 51	Pag.s 40 - 41			STD	
						Pag. 52	Pag.s 37 -39			DIN	
	4	Pag. 11									
		Pag. 11									
	5	r ag. 11			Pag. 23					DIN	
					Pag. 24					STD	
										I	
32 passo 6	3+3						Pag. 37			DIN	
							Pag. 42				
	4+4						Pag. 40			DIN	
	5+5					Pag. 52				DIN	
						Pag. 52				DIN	

DIAMETRO	N° GIRI	MC	MC+MC	MCPI	MF	MF+MC	MFPI	FC	MCTF	TIPO
PASS0	SFERE	Madrevite Cilindrica Unica	Doppia Madrevite Precaricata Cilindrica	Madrevite Cilindrica Precarico Interno	Madrevite Flangiata Unica	Doppia Madrevite Precaricata Flangiata	Madrevite Flangiata Precarico Interno	Madrevite Unica Flangia Centrale	Madrevite Cilindrica Unica con Terminale Filettato	FORATURA FLANGIA
		Pag. 12								
	3				Pag.s 21 - 25					STD
					Pag. 25					DIN
_										
		Pag. 12							Pag. 9	
	4				Pag.s 21 - 25					DIN
_					Pag.s 21 - 24					STD
		D 40							D 0	
	5	Pag. 12			D 05				Pag. 9	DIN
32 passo 10					Pag. 25					DIN
			Pag. 16							
	3+3		1 dg. 10			Pag. 53	Pag. 40			STD
	3.3					Pag. 53	Pag. 39			DIN
-						. 49. 00	1 49. 07			5
			Pag. 16			Pag. 52				
	4+4		-			Pag.s 52 - 53				DIN
						Pag. 53				STD
	5+5					Pag. 53				DIN
		Pag. 12								
	4	1 ug. 12			Pag. 26					DIN
32 passo 12					1 49. 20					Diii
	4+4					Pag. 53				DIN
	0	Pag. 12			D 10					OTD
	2				Pag. 19					STD
					Pag. 21					DIN
32 passo 20					Pag. 19					STD
	3				Pag. 21					DIN
-		l .	1	l	-3. 2.		l	l	I	,
	2+2					Pag. 53				STD
	0	Pag. 12								
22 nacca 25	2				Pag. 19					STD
32 passo 25										
_	2+2					Pag. 53				STD

DIAMETRO PASSO	N° GIRI	MC	MC+MC	MCPI	MF	MF+MC	MFPI	FC	MCTF	TIPO FORATURA
	SFERE	Madrevite Cilindrica Unica	Doppia Madrevite Precaricata Cilindrica	Madrevite Cilindrica Precarico Interno	Madrevite Flangiata Unica	Doppia Madrevite Precaricata Flangiata	Madrevite Flangiata Precarico Interno	Madrevite Unica Flangia Centrale	Madrevite Cilindrica Unica con Terminale Filettato	FLANGIA
		Pag. 12								
	4				Pag.s 26 - 27					STD
					Pag. 27					DIN
									Pag. 9	
	5				Pag. 27				-	DIN
		5 40								
	6	Pag. 12			Pag. 27					STD
40 passo 5					1 09. 27					0.5
			Pag. 15							
	4+4					Pag. 54	Pag. 42			STD
							Pag. 43			DIN
	5+5						Pag. 46			DIN
						1				
			Pag. 15							
	6+6					Pag. 54				STD
							Pag. 46			DIN
	4	Pag. 12								
						ı	I	ı		
	6	Pag. 12								
40 passo 6					Pag. 27					DIN
40 hassa 0			Pag. 15				Pag.s 43 - 44			
	4+4						Pag. 44			DIN
		T					I			
	6+6					Pag. 54				DIN

DIAMETRO	N° GIRI SFERE	MC	MC+MC	MCPI	MF	MF+MC	MFPI	FC	MCTF	TIPO
PASS0		Madrevite Cilindrica Unica	Doppia Madrevite Precaricata Cilindrica	Madrevite Cilindrica Precarico Interno	Madrevite Flangiata Unica	Doppia Madrevite Precaricata Flangiata	Madrevite Flangiata Precarico Interno	Madrevite Unica Flangia Centrale	Madrevite Cilindrica Unica con Terminale Filettato	FORATURA FLANGIA
		Pag. 12								
	3	-			Pag. 28					STD
						ı	I	I		
		Pag. 12							Pag. 9	
	4				Pag. 28					STD
					Pag. 32					DIN
			Pag. 15				Pag. 44			
40 passo 10	3+3		i ay. is			Pag. 55	Pag.s 45 - 47			STD
						. ag. oo	Pag. 46			DIN
_		<u> </u>				I	J		l	
			Pag. 15				Pag. 44			
	4+4					Pag. 55	Pag.s 45 - 47			STD
						Pag. 57	Pag. 46			DIN
	6+6		Pag. 15							
40 passo 12	4+4						Pag. 43			DIN
		Pag. 13			Pag. 33					
		1 49. 10			Pag.s 29 - 30			Pag. 31		STD
					Pag. 32			J		DIN
40 passo 20										
ιυ μαδού Ζυ	4				Pag. 33					DIN
							I		I	
	3+3					Pag. 56				STD
						Pag.s 55 - 57				DIN
	2	Pag. 13			Pag. 30					
40 passo	۷				Pag.s 29 - 30			Pag. 31		STD
40										
	2+2					Pag. 56				STD

DATI TECNICI

TECHNICAL DATA

RIGIDEZZA STATICA E DINAMICA

E' nota la definizione di rigidezza statica, quale rapporto fra il carico applicato e la deformazione che si determina:

$$K \text{ stat } \lor = \frac{F}{f} \text{ (kg/µm)}$$

La rigidezza statica della vite (**K stat V**) si esprime in [kg/ μ m] e corrisponde alla deformazione assiale.

Ad esempio, per una rigidezza di $1,3 \cdot 10^3~\text{kg/µm}$, con un carico assiale di 5000~kg, si ha una deformazione che equivale a:

$$(5000 : 1300) = 3.8 \mu m.$$

La rigidezza globale della vite a circolazione di sfere è funzione di 3 fattori:

- a. la rigidezza della vite (o albero filettato);
- b. la rigidezza della madrevite;
- c. la rigidezza nella zona di contatto delle sfere.

Rigidezza statica della vite

$$K \text{ stat } \lor = \frac{F}{f} = \frac{A \cdot E}{I \cdot 10^3} \text{ (kg/µm)}$$

dove: **A**, sezione dell'albero (mm²);

E, modulo di elasticità (21•10³ kg/mm²);

I, lunghezza iniziale dell'albero.

Rigidezza statica della madrevite

K stat M, che normalmente è molto elevata, per la forma compatta della madrevite stessa; si calcola con la formula precedente.

Rigidezza statica della zona di contatto delle sfere

 ${\bf K}$ stat ${\bf M}$, è determinata teoricamente, in funzione del contatto sfere-gola, per carichi superiori a quelli del normale funzionamento.

Tali carichi corrispondono alla deformazione della filettatura della vite e della madrevite ed alla deformazione al contatto sfere-gola. Si possono migliorare le condizioni di rigidezza, applicando alla madrevite un precarico.

Naturalmente le caratteristiche di rigidezza della vite devono essere correlate con la rigidezza della macchina e con le modalità di fissaggio della vite sulla macchina stessa: in particolare i supporti della vite e la loro rigidezza.

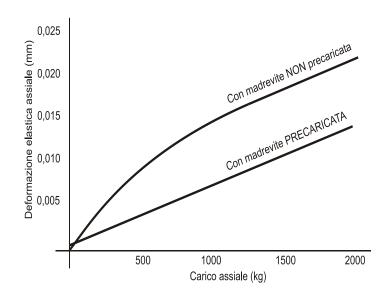
Le caratteristiche dinamiche delle viti a circolazione di sfere sono presenti negli studi dei progettisti, i quali devono sempre maggiormente tenere in conto le "risposte" delle macchine alle sollecitazioni che loro pervengono, e che non sono "a regime". La rigidezza dinamica è funzione delle variazioni del carico, applicato alla vite a circolazione di sfere, ed in particolare del

rapporto fra la frequenza di tali valori e la frequenza propria dell'organo considerato.

E'noto che quando si verifica eguaglianza fra le due frequenze, la rigidezza dinamica è minima, ed insorgono fenomeni di risonanza. I parametri dai quali dipende la rigidezza dinamica delle viti a sfere, sono:

- massa oscillante;
- rapporto di smorzamento;
- rigidezza statica;
- frequenza propria.

$$K \dim = \frac{K \operatorname{stat}}{A}$$


Nel nostro caso ${\bf A}$ assume approssimativamente valori compresi tra ${\bf 4}$ e ${\bf 5}$.

Per migliorare la rigidezza dinamica, occorre allontanare i valori della frequenza di eccitazione da quelli della frequenza naturale, e/o realizzare il massimo smorzamento con valori appropriati di precarico.

DEFORMAZIONI

E'possibile conoscere il valore della deformazione elastica assiale in un complesso vite-madrevite sottoposto ad un determinato carico.

Tale valore viene calcolato di volta in volta, in quanto esso è funzione del numero e del diametro delle sfere in lavoro, delle condizioni di impiego e del precarico all'interno del complesso vite-madrevite.

CALCOLO DELLA COPPIA APPLICATA

La coppia C, necessaria per il funzionamento di una vite a sfere, alla quale sia applicato un carico assiale F, vale:

$$Ct = \frac{F \cdot p}{2000 \cdot \pi \cdot \eta} = kgm$$

dove: **F**, è il carico assiale

p, è il passo della vite

 η , è il rendimento della coppia elicoidale (0,9).

A questa si dovrebbero aggiungere la coppia di inerzia dell'albero filettato e la coppia dovuta al precarico della madrevite.

CALCOLO DEI CARICHI E DELLA DURATA

Il calcolo del carico ammissibile sull'albero può essere impostato, specialmente per le viti lunghe e sottili, incastrate ad una estremità e libere dall'altra (caso più gravoso), con i procedimenti dei solidi caricati di punta (formule di Eulero).

Il carico al quale è soggetta la vite a sfere deve essere considerato applicato in condizioni dinamiche, talvolta con urti: pertanto, il dimensionamento deve tenere conto di questa condizione.

Inoltre è da rilevare che il dimensionamento della vite a sfere deve essere effettuato, tenendo conto non della sola vite, ma della resistenza del gruppo vite-madrevite-sfere.

Per quanto riguarda la durata di una vite, si fa notare che essa è correlata con la sua resistenza alla fatica, e con il numero di volte in cui la sfera tocca un dato punto della gola.

Perciò, la misura di durata di una vite a sfere è espressa in numero di rotazioni (10⁶ giri, ossia milioni di giri).

Il coefficiente \mathbf{C}_{din} di carico dinamico indica il carico ammissibile (in kg) per una durata \mathbf{T} di 10^6 giri. Il coefficiente \mathbf{C}_{stat} di carico statico corrisponde al carico massimo ammissibile sulla vite in condizioni di riposo, o per rotazioni lentissime.

Oltre tale carico si ha una deformazione permanente sulle piste di rotolamento di 0,0001 rispetto al diametro della sfera.

Per la scelta della vite è necessario, però, conoscere il carico medio **Fm**: ossia il carico corrispondente alla utilizzazione reale della vite, che è determinato dalle condizioni di impiego della vite stessa e può essere calcolato approssimativamente con la formula seguente:

$$F_{V} = \sqrt[3]{\frac{F_{1}^{3}T_{1} + F_{2}^{3}T_{2} + ... + F_{n}^{3}T_{n}}{T}}$$

dove:

 \mathbf{F}_1 è il carico costante durante \mathbf{T}_1 rotazioni; $\mathbf{F}_2...\mathbf{F}_n$, sono i carichi costanti durante $\mathbf{T}_2...\mathbf{T}_n$ rotazioni; $\mathbf{T} = \mathbf{T}_1 + \mathbf{T}_2 + ... + \mathbf{T}_n$, sono il numero il numero totale di rotazioni durante le quali agiscono i carichi \mathbf{F}_1 , \mathbf{F}_2 , ..., \mathbf{F}_n .

Il calcolo della durata della vite:

$$T_{\rm v} = \left(\frac{C_{\rm din}}{F_{\rm m}}\right)^3 \cdot 10^6 \text{giri}$$

$$F_{\rm m} = \frac{C_{\rm din}}{\sqrt[3]{\frac{T_{\rm v}}{10^6}}}$$

dove:

T durata della vite in numero di giri

C_{dia} carico dinamico

(v. Tabelle dei dati tecnici, pagg. 10 ÷ 69)

F_ carico medio di utilizzazione

Per il calcolo della durata, si considera per ${\bf F}_{\rm m}$ il valore medio del carico, che influisce sulla durata alla terza potenza. Ancora il rapporto

$$\frac{C_{\text{din}}}{F_{\text{m}}} = \sqrt[3]{\frac{T_{\text{v}}}{10^6}}$$

può essere denominato λ e ricavato in funzione del numero di rotazioni richiesto alla vite.

VITA OPERATIVA

La **vita nominale** di una vite a sfere è il numero di ore di attività ad una velocità costante (o il numero di giri) che la vite è in grado di sopportare prima che si presentino i primi segni di fatica (sfogliature) sulle superfici di rotolamento (vite e madrevite).

L'esperienza pratica ha evidenziato che viti identiche, che lavorano nelle stesse condizioni, hanno diversa durata; da qui il concetto di vita nominale. La vita nominale, in accordo con la definizione ISO, è la vita raggiunta o superata dal 90% di un sufficientemente ampio numero di viti identiche che lavorano nelle stesse condizioni (allineamento, carico applicato, velocità, accelerazione, temperatura, lubrificazione e pulizia).

La **vita utile** è la durata di una specifica vite prima del cedimento. Il cedimento non è di norma causato dalla fatica (sfogliamento), ma dall'usura del sistema di ricircolazione, corrosione, contaminazione e, più in generale, dalla perdita delle caratteristiche funzionali.

Per ottenere una vita utile equivalente alla vita nominale la vite deve essere sottoposta ad un carico medio effettivo non superiore all' 80% del carico dinamico lungo una corsa non inferiore a 4 volte il passo.

La determinazione della "taglia" della vite per ottenere la durata richiesta è fornita dall'esperienza acquisita con applicazioni simili; è necessario inoltre considerare le specifiche necessità strutturali come la robustezza dei terminali (codoli) e degli attacchi della madrevite a causa degli sforzi applicati a questi elementi.

Montaggio

Al fine di garantire la durata prevista della vite è importante assicurare un allineamento corretto della stessa con le guide di scorrimento. Carichi radiali e spinte eccentriche che diano origine a momenti sono tassativamente da evitare perchè riducono in maniera significativa la durata della vite.

Lubrificazione

La lubrificazione delle viti a sfere deve essere opportuna in quantità e qualità, a maggior ragione per quelle viti che lavorano ad elevata velocità.

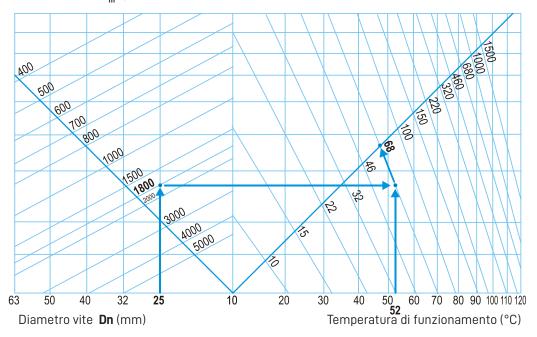
Quantità, distribuzione e frequenza della lubrificazione devono essere determinati opportunamente e costantemente controllati. A velocità elevate il lubrificante sulla superficie della vite può essere espulso dalla forza centrifuga.

È importante tenere sotto controllo questo fenomeno durante le prime corse a velocità elevate e quindi adattare la frequenza di lubrificazione, il flusso e la qualità del lubrificante. Eventualmente utilizzare un lubrificante a viscosità superiore. L'ottimizzazione della frequenza di lubrificazione e della quantità di lubrificante deve essere determinata tenendo conto della temperatura raggiunta dalla madrevite e dal suo andamento. Una buona lubrificazione è altresì indispensabile per garantire il buon funzionamento e la durata stessa della vite.

Le viti possono essere lubrificate con olio o con grasso.

In generale la quantità d'olio necessaria a garantire una corretta lubrificazione è compresa tra 3 e 5 cm³/h, per ogni giro di sfere. La lubrificazione a grasso è consigliata SOLO per basse velocità di rotazione. La quantità di grasso consigliata è di circa metà del volume libero all'interno della chiocciola.

La corretta lubrificazione consente di ottenere:


- a) una durata elevata e conforme ai valori di calcolo
- b) una adeguata dissipazione del calore
- c) la diminuzione dell'usura e della corrosione

Lubrificazione ad olio

Diagramma per la determinazione della viscosità cinematica dell'olio lubrificante

Velocità media $\mathbf{n}_{_{\mathbf{m}}}$ (giri/min.)

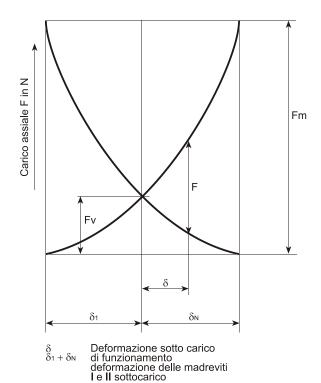
Viscosità olio ISO VG (mm²/sec. a 40°)

- Il sistema di lubrificazione più adatto è quello centralizzato ad olio.
- Quantità di lubrificante: 3÷6 cm³/h per ogni circuito di sfere.
- Per temperature di esercizio comprese tra 10°C e 70°C la viscosità dovrebbe essere collocata tra ISO VG68 e ISO VG220.

Lubrificazione a grasso

- Si utilizza per condizioni di funzionamento a basse velocità.
- Impiegare grasso secondo la Classe 2 DIN 51825 ogni tre mesi max.
- In presenza di carichi elevati impiegare grasso conforme alle norme DIN 51818
- Introdurre grasso in quantità corrispondente ad almeno la metà del volume libero all'interno della chiocciola.
- Effettuare la sostituzione completa del grasso ogni 12 mesi.
- Ridurre anche significativamente gli intervalli di lubrificazione in condizioni di lavoro particolarmente avverse: sbalzi di temperatura, umidità ambienti polverosi o salini, ecc.

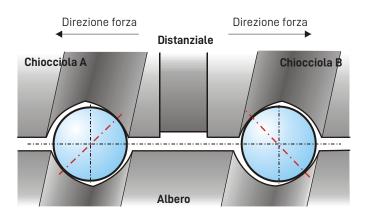
Tabella delle classi di viscosità


Classe di	Viscosità media	Limiti di viscosità a 40°C mm²/s			
viscosità ISO	a 40°C mm²/s	min	max		
ISO VG 2	2,2	1,98	2,42		
ISO VG 3	3,2	2,88	3,52		
ISO VG 5	4,6	4,14	6,06		
ISO VG 7	6,8	6,12	7,48		
ISO VG 10	10	9	11		
ISO VG 15	15	13,5	16,5		
ISO VG 22	22	19,8	24,2		
ISO VG 23	32	28,8	35,2		
ISO VG 46	46	41,4	40,6		

Classe di	Viscosità media	Limiti di viscosità a 40°C mm²/s				
viscosità ISO	a 40°C mm²/s	min	max			
ISO VG 68(*)	68	61,2	74,8			
ISO VG 100	100	90	110			
ISO VG 150	150	135	165			
ISO VG 220	220	198	242			
ISO VG 320	320	288	352			
ISO VG 460	460	414	506			
ISO VG 680	680	612	748			
ISO VG 1000	1000	900	1100			
ISO VG 1500	1500	1350	1650			

PRECARICO

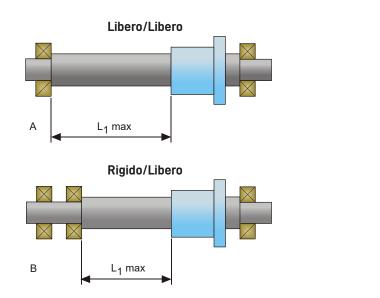
Si usa il precarico allorché venga richiesta la massima rigidità e assenza di gioco. Il precarico riduce la deformazione elastica nell'accoppiamento vite/madrevite, accresce la precisione e migliora la capacità di risposta agli impulsi di comando.


Valori minori del precarico riducono la rigidità, valori maggiori aumentano l'attrito; nei due casi viene rispettivamente pregiudicata la precisione del posizionamento o la durata della vite.

Viti a circolazione di sfere con madreviti singole senza precarico denotano gioco assiale ed hanno una modesta rigidità, non appena caricate, in seguito ad uno sfavorevole contatto.

Perciò il movimento relativo vite - madrevite può raggiungere valori elevati. Se necessita una vite a circolazione di sfere senza gioco, con una elevata precisione di posizionamento e perciò una elevata rigidità si devono usare sistemi a madrevite precaricata. Valori più elevati comportano coppie più elevate, rendimento e durata inferiori. Un incremento troppo elevato del precarico della madrevite produce un incremento limitato della rigidezza, ma un considerevole aumento della coppia di precarico e quindi della temperatura di esercizio. Il precarico normalmente applicato in fabbrica risulta essere circa il 6% del carico dinamico ed è considerato ottimale e non deve essere incrementato.

Il precarico si ottiene inserendo uno spessore di opportune dimensioni fra le due chiocciole e agendo con forza a trazione sulle stesse.

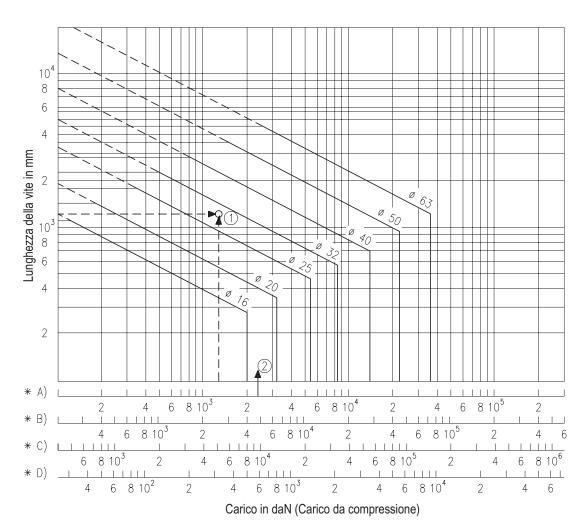


Il valore del precarico viene determinato agendo sullo spessore del distanziale.

^(*) Classe di viscosità consigliata

SISTEMI DI SUPPORTO

Le figure A, B, C e D mostrano i corretti sistemi di supporto in carico a compressione/trazione.



CARICO A COMPRESSIONE

Quando si da un carico a compressione alla vite, il sistema può essere soggetto a deformazioni.

Il seguente diagramma fornisce i dati per stimare se la vite selezionata sia adatta a sopportare il carico di compressione in rapporto alla sua lunghezza.

Scaravella F.lli

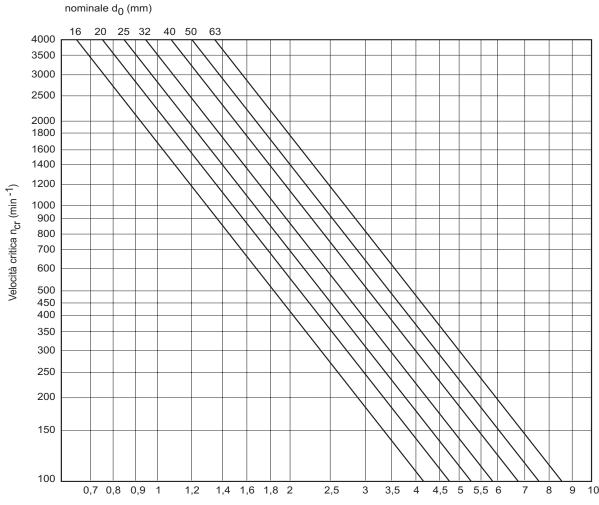
La capacità di carico di una vite varia in base al diametro, alla lunghezza e al fissaggio delle estremità (montaggio dei cuscinetti di supporto).

Se il diagramma indica che la vite selezionata è marginale, se ne deve selezionare un'altra con un diametro maggiore.

Nel diagramma la linea parallela a quella della lunghezza non supportata rappresenta il carico di compressione o di trazione ammesso.

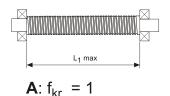
Esempio:

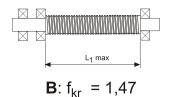
Lunghezza max supportata L₁ = 1200 mm Carico max di compressione = 2500 daN Sistema di supporto = rigido/supportato (B)

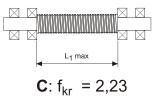

Dal diagramma della pagina precedente secondo i dati utilizzati l'intersezione 1 mostra che la corretta vite da utilizzare è almeno ø32.

VELOCITÀ CRITICHE

Velocità critica della vite


La vite è assimilata ad un cilindro di diametro pari al nocciolo della vite. La formula impiegata contiene un parametro il cui valore è determinato dal montaggio della vite (supportata oppure incastrata).


Come regola la madrevite non deve essere considerata supporto per la vite. A causa della potenziale inaccuratezza nell'assemblaggio della vite, è opportuno applicare un coefficiente di sicurezza di 0.8 nel calcolo della velocità critica.



La velocità critica (1° ordine) è funzione della lunghezza libera della vite, e del diametro nominale.

Velocità critica: $n_{cradm} = u \cdot n_{cr} \cdot f_{kr} \quad min^{-1}$ (11)

u = coefficiente di sicurezza

n_{cr} = velocità critica

[max. = 0,8]

[min⁻¹]

 f_{kr} = fattore di correzione a seconda del tipo di supporto

	Nocciolo del filetto						
Sfera ø	2,38 mm	Sfera ø	3,5 mm	Sfera ø 6,35 mm			
Diametro vite (mm)	nocciolo		Diametro nocciolo (mm)	Diametro vite (mm)	Diametro nocciolo (mm)		
16	14.01	16	13,59				
		20	16,83				
		25	21,83				
		32	28,83				
		40 passo 5	36,83	40 passi 10/20/40	35,00		
		50 passo 5	46,83	50 passi 10/20/40	45,00		
				63 passi 10/20	58,00		

Velocità limite del sistema

La velocità limite del sistema è la piu bassa tra la velocità critica della vite e la velocità critica della chiocciola risultante dalle velocità, accelerazioni e forze applicate alle sfere all'interno dei rinvii di ricircolazione.

La velocità limite del sistema vite-madrevite è quella velocità che una vite non deve superare per rimanere in condizioni di affidabilità. La velocità limite è direttamente ricavata dalla formula per la velocità critica della chiocciola ed è espressa dal rapporto fra un n° caratteristico ed il diametro nominale della vite (mm).

V lim. = n x Dn ≤ 90000

n = numero di giriDn = Diametro nominale

La velocità limite così determinata, frutto di esperienze e considerazioni sperimentali, può essere applicata per un periodo breve ed in condizioni di lavoro ottimali.

Il funzionamento continuato di una vite alla velocità limite può causare una riduzione della durata calcolata del sistema vitemadrevite.

Carichi elevati associati a elevate velocità richiedono una coppia di ingresso altrettanto elevata e di conseguenza determinano una vita nominale relativamente breve.

Nel caso di elevate accelerazioni e decelerazioni è raccomandato lavorare con un carico esterno mai inferiore ad un valore minimo o applicare un precarico leggero alla madrevite per evitare lo slittamento dei corpi volventi all'inversione del moto.

Un precarico troppo elevato creerà un incremento inaccettabile della temperatura interna.

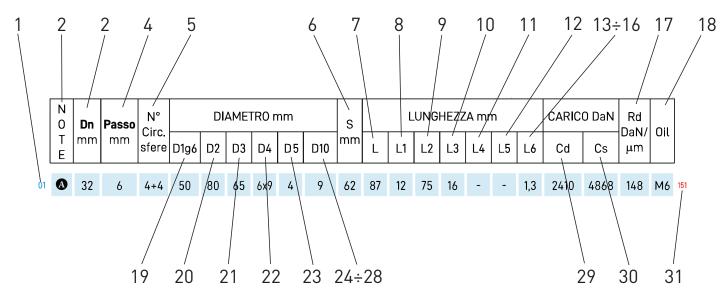
Per necessità diverse contattateci e Vi forniremo le indicazioni necessarie al miglior impiego delle nostre viti.

PRECISIONE

Tutte le viti possono essere realizzate secondo le tolleranze di precisione ISO3 - ISO5 - ISO7.

___0__

I dati contenuti nel presente catalogo non sono impegnativi per la **Scaravella F.lli S.r.l.** che si riserva la facoltà di variare la propria produzione per apportare migliorie tecniche e di produzione ai propri prodotti. Ogni offerta è accompagnata da una o più schede tecniche relative alla fornitura richiesta che sono vincolanti per la **Scaravella F.lli S.r.l.** nei confronti dei propri Clienti.


TABELLE MADREVITI STANDARD

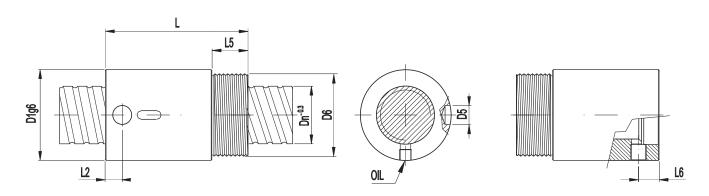
STANDARD BALLSCREWS TABLES

MODALITÀ DI LETTURA DELLE TABELLE

Diseguito sono elencate e descritte tutte le informazioni contenute nelle TABELLE MADRE VITI STANDARD riportate nelle pagine successive:

1	POS:	N° della riga sulla pagina del catalogo,
2	NOTE:	N° ID. della nota, o delle note, riportata nel piede della tabella,
3	Dn:	Diametro nominale vite/madrevite,
4	Passo:	Passo dei filetti della vite/madrevite,
5		N° di giri di sfere impegnati sul filetto,
6		Larghezza fresatura flangia,
7		Lunghezza totale madrevite,
8		Lunghezza (spessore) flangia,
9		Lunghezza madrevite sottoflangia,
10		Lunghezza diametro di centraggio in g6,
11		Profondità lamatura fori flangia,
12		Lunghezza musino madreviti flangiate,
13		Lunghezza fresatura 3° piano su flangia,
14		Interasse orizzontale fori su flangia quadrata o rettangolare,
15		Interasse verticale fori su flangia quadrata o rettangolare,
16		Prodondità lamatura foro olio sotto flangia.
17	Rd:	
18		Filettatura (o diametro) foro di lubrificazione
19		Diametro di centraggio (toll. g6),
20		Diametro della flangia,
21		Diametro interasse foratura flangia,
22		N° di fori flangia e loro diametro,
23		Diametro lamatura fori flangia,
24	D6:	Diametro musino,
25		Diametro foro olio sotto(su) flangia,
26		Diametro interasse foro olio sotto flangia,
27		Diametro interasse foro olio sopra flangia
28		Diametro lamatura foro olio sotto flangia,
29		Carico dinamico,
30	Cs:	,
31		Codice "univoco" disegni.

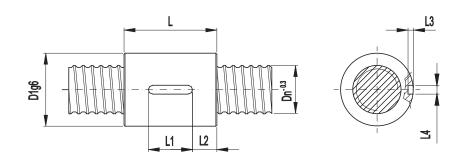
Per una ricerca ed una identificazione della madrevite pià rapida ed efficace utilizza **eCat.S**, il nostro applicativo software semplice ed intuitivo che consente di individuare la vite di vostro interesse tra tutta la nostra produzione. Scarica ed installa il software cliccando sul link a fianco (https://scaravella.it/download/eCatS_Install.exe).



--0--

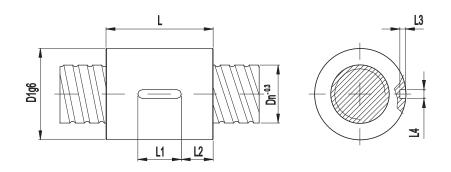
NB: Utilizzare il COD.DIS. (Codice "univoco" disegni), preceduto dalla lettera "C" nelle richieste di informazioni, richieste di offerte e ordini, al fine di identificare in modo esatto la madrevite (es. C151) Nel caso, dove previsto, di richieste riferite a madreviti con passo sinistrorso sostituire la lettera "C" con la lettera "S" (es. S151).

Scaravella F.lli



N 0	Dn	Passo	N° Circ.		D	IAM	ETR	0 mr	n	S		L	UNG	HEZZ	'A mr	n		CARIC	0 DaN	Rd DaN/	Oil
T E	mm	mm		D1g6	D2	D3	D4	D5	D6	mm	L	L1	L2	L3	L4	L5	L6	Cd	Cs	μm	Oit
	16	5	3	33	-	-	-	3,2	M26x1,5	-	45	-	3	-	-	12	2,5	1368	1857	-	-
1	20	5	4	38	-	-	-	8	M35x1,5	-	54	-	8	-	-	14	8	1876	2985	-	M6
	20	10	4	38	-	-	-	8	M35x1,5	-	75	-	8	-	-	14	9,5	1917	2984	-	M6
	25	5	5	43	-	-	-	8	M40x1,5	-	69	-	8	-	-	19	8	2400	4710	-	M6
	25	10	4	43	-	-	-	8	M40x1,5	-	81	-	12	-	-	19	10	2150	3770	-	M6
	32	5	5	52	-	-	-	8	M48x1,5	-	64	-	8	-	-	19	9	2932	6085	-	M6
	32	10	4	54	-	-	-	8	M48x1,5	-	81	-	15	-	-	19	8	2505	4868	-	M6
	32	10	5	54	-	-	-	8	M48x1,5	-	90	-	15	-	-	19	8	3131	6085	-	M6
	40	5	4	60				8	M56x1,5	_	65		8			19	9	3311	7653		M6
	40	10	4	65		_	_	8	M60x1,5	_	105	_	15	_	_	24	16	5985	11099	_	140 M8x1
	40	10	4	03				O	1410011,5		103		13			24	10	3703	11077		IVIOXI

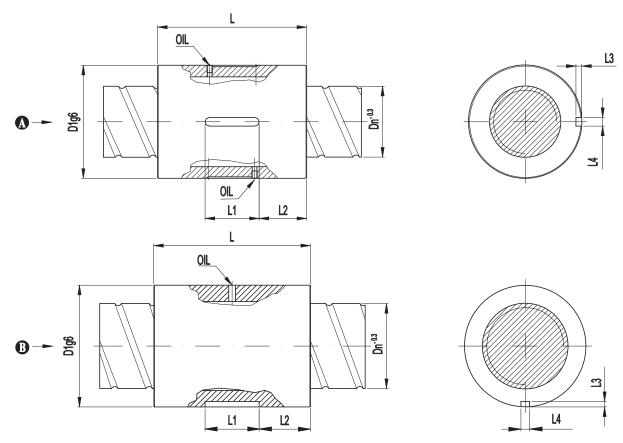
PAGINA LASCIATA INTENZIONALMENTE BIANCA **BLANK PAGE**



Velocità limite del sistema vite-madrevite: n x Dn \leq 90000 (n = giri/min Dn = diametro nominale)

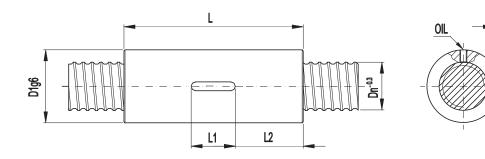
	N	D=	Passo	N°		D	IAME	TRO		mile det	Sistem	ia vite-		_UNG				ı = yılı	CARIC		Rd	mate)	
	0 T E	Dn mm	mm	Circ. sfere	D1g6	D2	D3	D4	D5	D6	mm	L	L1	L2	L3	L4	L5	L6	Cd	Cs	DaN/ μm	Oil	
03		16	5	3	28	-	-	-	-	-	-	40	15	12,5	2,5	4	-	-	1368	1857	-	-	083
21		16	5	4	28	-	-	-	-	-	-	47	20	13,5	2,5	4	-	-	1824	2746	-	ø3	346
05	1	20	5	3	33	-	-	-	-	-	-	42	20	11	2,5	4	-	-	1508	2239	-	ø3	084
30		20	5	4	33	-	-	-	-	-	-	48	25	11,5	2,5	4	-	-	1876	2985	-	-	318
06		20	10	3	38	-	-	-	-	-	-	53	25	14	3	5	-	-	1498	2238	-	M4	085
08	1	25	5	3	38	-	-	-	-	-	-	42	20	11	2,5	4	-	-	1684	2827	-	ø3	086
31		25	5	3	40	-	-	-	-	-	-	42	20	11	2,5	4	-	-	1684	2827	-	ø3	319
09		25	5	4	38	-	-	-	-	-	-	48	20	14	2,5	4	-	-	2157	3769	-	ø3	087
32		25	5	4	40	-	-	-	-	-	-	48	20	14	2,5	4	-	-	2157	3769	-	ø3	320
10		25	10	3	40	-	-	-	-	-	-	51,5	20	15,5	3	5	-	-	1678	2827	-	M4	255
12		25	10	3	43	-	-	-	-	-	-	51	20	15,5	3	5	-	-	1678	2827	-	M4	256
13		25	10	4	40	-	-	-	-	-	-	62	20	21	3	5	-	-	2150	3770	-	M4	257
14		25	10	4	43	-	-	-	-	-	-	62	20	21	3	5	-	-	2150	3770	-	M4	258
15	1	25	20	2	43	-	-	-	-	-	-	58	25	16,5	3	5	-	-	1167	1884	-	M4	089
17		32	5	3	48	-	-	-	-	-	-	42	20	11	3	5	-	-	1882	3650	-	M4	090
18	23	32	5	4	48	-	-	-	-	-	-	48	20	14	3	5	-	-	2412	4868	-	M4	091
33		32	5	4	50	-	-	-	-	-	-	48	20	14	3	5	-	-	2412	4868	-	M4	316
34		32	5	6	48	-	-	-	-	-	-	58	20	19	3	5	-	-	3419	7302	-	M4	317
19		32	6	4	48	-	-	-	-	-	-	54	25	14,5	3	5	-	-	2410	4868	-	-	092
20		32	6	5	50	-	-	-	-	-	-	58	25	16,5	3	5	-	-	2920	6085	-	-	093
35																							
36																							
37																							

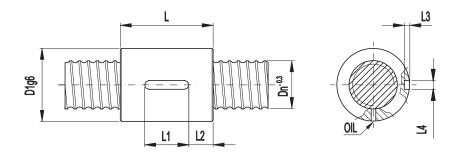
(1) Disponibile anche con passo sinistrorso (23) Disponibile anche con passo sinistrorso, SENZA foro olio



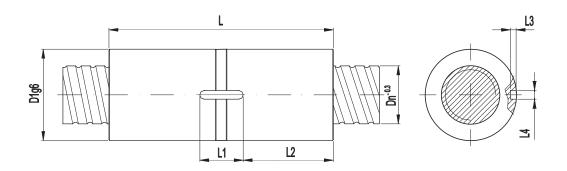
Velocità limite del sistema vite-madrevite: n x Dn \leq 90000 (n = giri/min Dn = diametro	nominale)
---	-----------

	N							VELU	icita ti	iiiite uet s	5151611	la vite	IIIaui	evile.	II X DI	1 -> 70	1) 000	ı – giri		- ulaille		iiiate,	Ί
	0	Dn	Passo	N° Circ.		D	IAME	TR0 ı	mm		S		L	UNG	HEZZ	'A mr	n		CARIC	0 DaN	Rd DaN/	Oil	
	T E	mm	mm	sfere	D1g6	D2	D3	D4	D5	D6	mm	L	L1	L2	L3	L4	L5	L6	Cd	Cs	μm	Uit	
01		32	10	3	50	-	-	-	-	-	-	51	20	15,5	3	5	-	-	1879	3651	-	M4	259
02		32	10	4	50	-	-	-	-	-	-	62	20	21	3	5	-	-	2505	4868	-	M4	260
30		32	10	5	50	-	-	-	-	-	-	74	30	22	3	5	-	-	3131	6085	-	M4	322
03																							
04		32	12	4	50	-	-	-	-	-	-	72,6	25	23.8	3	5	-	-	2501	4868	-	-	286
05																							
06		32	20	2	50	-	-	-	-	-	-	58	25	16,5	3	5	-	-	1314	2434	-	M4	098
07	1	32	25	2	50	-	-	-	-	-	-	68	30	19	3	5	-	-	1305	2434	-	-	099
08																							
09	1	40	5	4	56	-	-	-	-	-	-	48	20	14	3	5	-	-	2649	6123	-	-	100
10	1	40	5	6	56	-	-	-	-	-	-	58	20	19	3	5	-	-	3755	9184	-	-	101
11		40	6	4	56	-	-	-	-	-	-	54	25	14,5	3	5	-	-	2649	6123	-	-	102
12		40	6	6	63	-	-	-	-	-	-	67,5	20	23,75	3	5	-	-	3973	9184	-	-	249
13																							
14		40	10	3	63	-	-	-	-	-	-	74	30	22	3,5	6	-	-	4673	8324	-	ø5	104
15		40	10	4	62	-	-	-	-	-	-	94,5	30	32,25	3	5	-	-	5985	11099	-	M5	105
16																							
31		50	5	5	68	-	-	-	-	-	-	53	20	16,5	3	5	-	-	3422	9613	-	M4	401
32		50	5	6	66	-	-	-	-	-	-	58	20	19	3	5	-	-	4107	11536	-	M4	330
33		50	5	6	68	-	-	-	-	-	-	58	20	19	3	5	-	-	4107	11536	-	M4	400
18																							
19		50	10	4	72	-	-	-	-	-	-	94,5	30	32,25	3	5	-	-	6640	13946	-	M4	108
20		50	10	6	72	-	-	-	-	-	-	118	40	39	3	5	-	-	9411	20919	-	-	109

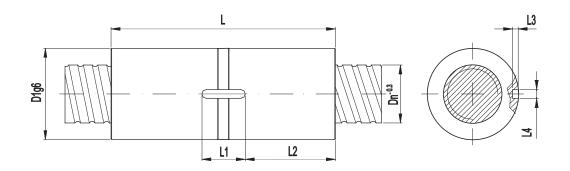

(1) Disponibile anche con passo sinistrorso

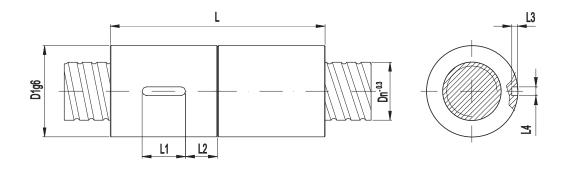

1 _ 1 _ 1	Passo mm 20 40	Circ.	D1g6 68 68		D3	D4	mm D5	D6	S mm		L	_UNG	HEZZ	'A mr	n		CARIC	O DaN I	Rd		
E	20 40	sfere 3	68	D2	D3	D4	D5	D6	mm							'			DaN/	Oil	
14 A 40 15	40			-	_				'	L	L1	L2	L3	L4	L5	L6	Cd	Cs	μm	Uit	
15		2	68			-	-	-	-	103	50	26,5	3,5	6	-	-	4648	8324	-	M4	106
01 A 50 02 A 50 03 A 50	20			_	-	-	-	-	-	116	50	33	3,5	6	-	-	3211	5549	-	M4	107
02 A 50 03 A 50	20																				
03 A 50	20	3	75	-	-	-	-	-	-	103	50	26,5	3,5	6	-	-	5166	10459	-	M4	284
	20	3	78	-	-	-	-	-	-	103	50	26,5	3,5	6	-	-	5166	10459	-	M4	110
04 A 50	20	4	78	-	-	-	-	-	-	126	50	38	3,5	6	-	-	6888	13945	-	M4	111
	20	4	75	-	-	-	-	-	-	126	50	38	3,5	6	-	-	6888	13495	-	M4	300
05																					
06 A 50	40	2	78	-	-	-	-	-	-	116	50	33	3,5	6	-	-	3594	6973	-	M4	112
07																					
08 B 63	10	6	90	-	-	-	-	-	-	116	40	38	4	8	-	-	10396	26468	-	M6	113
09																					
10 A 63	20	3	90	-	-	-	-	-	-	103	50	26,5	3,5	6	-	-	5714	13234	-	M4	114
11 A 63	20	4	90	-	-	-	-	-	-	126	50	38	3,5	6	-	-	7618	17645	-	M4	326
12																					

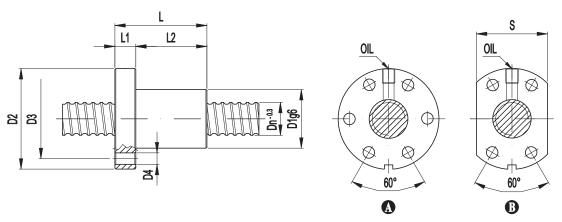
Velocità limite del sistema vite-madrevite: $n \times Dn \le 90000 \quad (n = qiri/min \quad Dn = diametro nominale)$


											1			011101		, 0	000 (9	/IIIIII DII	4.4		,	1
	N 0	Dn	Passo	N° Circ.		D	IAME	TR0 ı	mm		S		L	UNG	HEZZ	'A mr	n		CARIC		Rd DaN/	Oil	
	T E	mm	mm	sfere	D1g6	D2	D3	D4	D5	D6	mm	L	L1	L2	L3	L4	L5	L6	Cd	Cs	μM	Oit	
01		20	5	3+3	33	-	-	-	-	-	-	77,5	25	25,5	2,5	4	-	-	1508	2239	78	M4	206
02																							
03																							
04																							

Velocità limite del sistema vite-madrevite: n x $Dn \le 90000$ (n = giri/min Dn = diametro nominale)

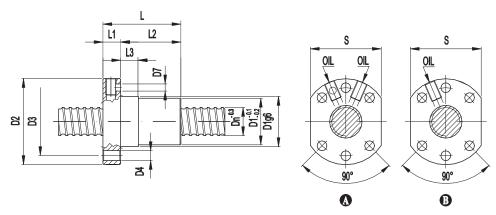

	N 0	Dn	Passo	N° Circ.		D	IAME	TR0 i	mm		S		L	UNG	HEZZ	'A mn	n		CARIC	0 DaN	Rd DaN/	Oil	
	T E	mm	mm		D1g6	D2	D3	D4	D5	D6	mm	L	L1	L2	L3	L4	L5	L6	Cd	Cs	μm	Oit	
06		32	5	3+3	50	-	-	-	-	-	-	58	20	19	3	5	-	-	1882	3650	118	M4	207
07																							
08																							
09																							
10																							
]


							Velc	ocità li	imite del s	<u>sister</u>	<u>na vite</u>	-madı	evite:	n x D	<u>n ≤ 90</u>	<u>ı) 000</u> ı	n = giri	<u>i/min Dn</u>	ı = diame	<u>tro non</u>	<u> </u>	<u>)</u>
	N O D r	n Passo	N° Circ		D	IAME	TRO	mm		S		L	UNG	HEZZ	'A mr	m		CARIC	O DaN		Oil	
E	T mr E	m mm	Circ. sfere	D1g6	D2	D3	D4	D5	D6	mm	L	L1	L2	L3	L4	L5	L6	Cd	Cs	DaN/ μm	Oil	
1	20	5	3+3	33	-	-	-	-	-	-	77	25	25	2,5	4	-	-	1508	2239	78	-	117
3	25	5 5	3+3	38	-	-	-	-	-	-	77	25	25	2,5	4	-	-	1684	2827	98	ø3	118
4	25	5 5	4+4	38	-	-	-	-	-	-	88	25	31	2,5	4	-	-	2245	3769	118	ø3	119
5 6	32	2 5	3+3	48	-	-	-	-	-	-	77	25	25,5	3	5	-	-	1882	3650	118	ø3	120
7	32	2 5	4+4	48	-	-	-	-	-	-	88	25	31	3	5	-	-	2412	4868	148	ø3	121
8	32	2 5	4+4	50	-	-	-	-	-	-	88	25	31	3	5	-	-	2412	4868	148	ø3	122
9												_										
)	40		4+4	56	-	-	-	-	-	-	88	25	31	3	5	-	-	2649	6123	177	-	123
	40		6+6	56	-	-	-	-	-	-	108	25	41	3	5	-	-	3973	9184	265	-	124
2	40		4+4 3+3	56 62	_		_	_	- 		102 140	25 30	38 54	3	5			2649 4673	6123 8324	168 148	-	125
4	40		3+3 4+4	62	_	_	_	_	_	_	165	30	65	3	6	_	_	5985	11099	187	_	127
5	40		6+6	62	-		-	-	_	-	214	40	87	3	6			8483	16648		-	128
6																						
7	50	5	4+4	66	-	-	-	-	-	-	88	25	31	3	5	-	-	2898	7690	217	-	129
8	50) 5	6+6	66	-	-	-	-	-	-	108	25	41	3	5	-	-	4107	11536	315	-	130
9	50	10	3+3	72	-	-	-	-	-	-	140	35	52	3,5	8	-	-	5185	10459	176	-	131
0	50		4+4	72	-	-	-	-	-	_	165	35	63	3	8	_	-	6640	13946			132
1	50	10	4+4	75	-	-	-	-	-	-	165	35	63	3,5	8	-	-	6640	13946	236	-	209
2																						
!3																						


Velocità limite del sistema vite-madrevite: $n \times Dn \le 90000 \quad (n = qiri/min Dn = diametro nominale)$

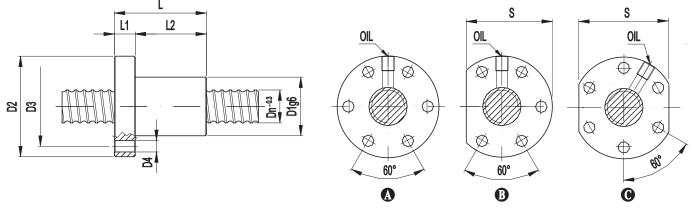
								¥010	orta ti	Tille doc	7101011	id vito	maai	OVICO.	II / DI	1 - 700	300 (11	- 91117	1111111 011	- ulaille		mate	-
	N 0	Dn	Passo	N° Circ.		D	IAME	TRO i	mm		S		L	UNG	HEZZ	'A mr	n		CARIC	0 DaN	Rd DaN/	Oil	
	T E	mm	mm	sfere	D1g6	D2	D3	D4	D5	D6	mm	L	L1	L2	L3	L4	L5	L6	Cd	Cs	μM	Oit	
01		63	10	4+4	85	_	_	_	_	_	_	164,5	35	63	3	8	_	_	7335	17645	284	_	133
02		63	10	4+4	90	-	-	-	_	-	-	164,5	35	63	3,5	8	-	_	7335	17645	284	-	134
03		63	10	5+5	85	-	-	-	-	-	-	192,5	40	76,5	3	8	-	-	8887	22057	353	-	135
04		63	10	5+5	90	-	-	-	-	-	-	192,5	40	76,5	3,5	8	-	-	8887	22057	353	-	136
05																							

								Velo	cità li	mite del s	sistem	a vite-	madr	evite:	n x Dr	$1 \le 900$	000 (n	= giri	/min Dn	= diame	tro nom	inale	<u>)</u>
	N 0	Dn	Passo	N° Circ.		D	IAME	TRO I	mm		S		L	UNG	HEZZ	A mr	n		CARIC	0 DaN	Rd DaN/	Oil	
	T E	mm	mm	sfere	D1g6	D2	D3	D4	D5	D6	mm	L	L1	L2	L3	L4	L5	L6	Cd	Cs	μm	Oit	
06		32	10	3+3	50	-	-	-	-	-	-	103	20	15,5	3	5	-	-	1879	3651	116	M4	259
07		32	10	4+4	50	-	-	-	-	-	-	124	20	21	3	5	-	-	2505	4868	155	M4	260
08																							
09																							
10																							



	N	Dra	Dance	N°			IAME	Velo TRO r		mite del s	sistem	a vite				n ≤ 900 'A mr		= giri	/min Dn		tro nom	inale)	
	0 T E	Dn mm	Passo mm	Circ. sfere	D1g6	D2	D3	D4	D5	D6	mm	L	L1	L2	L3	L4	L5	L6	Cd	Cs	DaN/ μm	Oil	
06	A 1	16	5	3	28	48	20	6x5,5	_	_		44	10	34			_	_	1368	1857	_	M6	OUE
07	B	16	5	3	28	48		4x5,5	-	_	32	44	10	34	_	_	_	_	1368	1857	_	M6	
09	A	16	5	4	28	48		6x5,5	_	_	-	50	10	40	_	_	_	_	1824	2746	_	M6	
10		10	5	7	20	40	30	0,0,0				30	10	40					1024	2/40		1410	L
11																							
12																							
13																							
14																							
15																							
16																							
17																							
18																							
19																							
20																							
21																							
22																							
23																							
24																							
25																							
26																							
27																							
28																							
29																							
	(1)	 Dispc	nibile a	ınche	con pa	3880 9	sinist	trorso)														

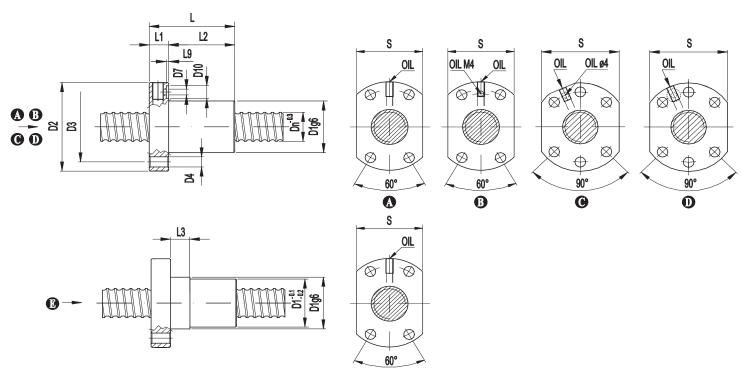
Flanged single nut



Velocità limite del sistema vite-madrevite: $n \times Dn \le 90000 \quad (n = giri/min \quad Dn = diametro nominale)$ Ν Ν° DIAMETRO mm LUNGHEZZA mm **CARICO DaN** Rd S 0 **Passo** Dn DaN/ Circ. Oil Τ mm mm mm sfere D1g6 D2 D3 L2 L3 L6 D4 D5 D7 L1 L4 L5 Cd Cs μm Ε 16 5 28 48 38 6x5,5 4 35 44 10 34 10 1368 1857 M6 007 3 1824 16 5 4 28 48 38 6x5,5 4 40 50 10 40 10 2748 M6 314 03 **B** 10 993 16 3 28 48 38 6x5,5 40 57 10 47 2161 M6 755

(1) - Disponibile anche con passo sinistrorso

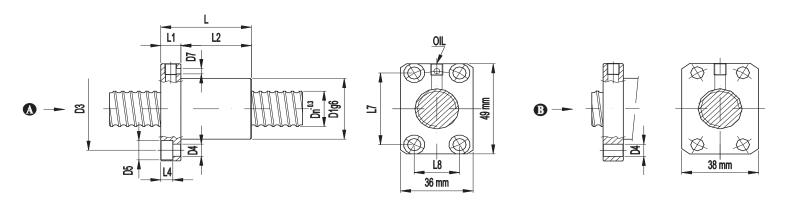
 $(^{17})$ - D7 = Ø 4 int. Ø 38



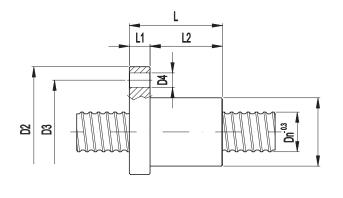
								Veloci	tà limi	te del s	sistem	a vite-	-madr	evite:	n x Dr	n ≤ 901	000 (n	= giri,	/min Dn	= diamet	tro nom	inale)	<u>)</u>
	N 0	Dn	Passo	N° Circ.		DI	AME ⁻	TR0 m	nm		S		L	UNG	HEZZ	A mr	n		CARIC	O DaN	Rd DaN/	Oil	
	T E	mm	mm	sfere	D1g6	D2	D3	D4	D5	D6	mm	L	L1	L2	L3	L4	L5	L6	Cd	Cs	μm	Oit	
06	A 1	20	5	3	33	57,5	45	6x6,6	-	-	-	45	10	35	-	-	-	-	1508	2239	-	M6	008
07	B	20	5	3	33	57,5	45	5x6,6	-	-	49	45	10	35	-	-	-	-	1508	2239	-	M6	009
11	A	20	5	4	33	57,5	45	6x6,6	-	-	-	50	10	40	-	-	-	-	1876	2985	-	M6	496
08	A 4	25	5	3	38	63	50	6x6,6	-	-	-	45	10	35	-	-	-	-	1684	2827	-	М6	274
09	0	25	5	3	38	63	50	6x6,6	-	-	59	45	10	35	-	-	-	-	1684	2827	-	M6	010
10	A 1	25	5	4	38	63	50	6x6,6	-	-	-	51	10	41	-	-	-	-	2157	3769	-	M6	011

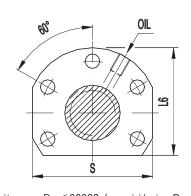
(1) - Disponibile anche con passo sinistrorso

(4) - Disponibile SOLO con passo sinistrorso



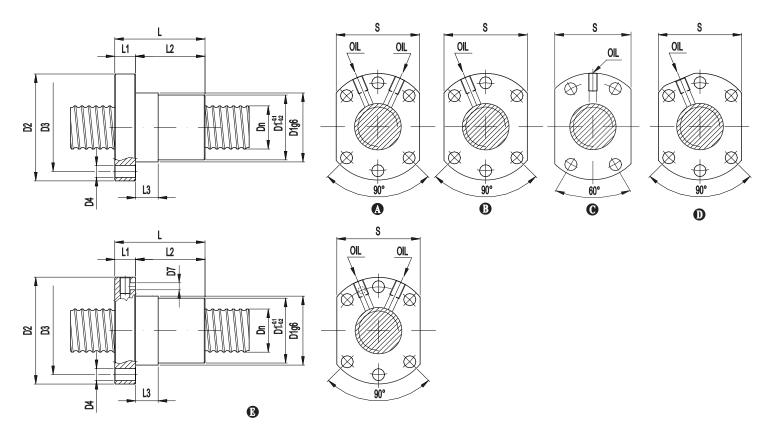
								Veloci	tà lim	ite del s	sistem	ia vite-	·madr	evite:	n x Dr	n ≤ 900	000 (n	ı = giri	/min Dn	= diame	tro nom	inale))
	N O	Dn	Passo	N° Circ.		DI	4ME	TR0 m	ım		S		L	UNG	HEZZ	'A mr	n		CARIC	0 DaN	Rd	Oil	
	T E	mm	mm		D1g6	D2	D3	D4	D7	D10	mm	L	L1	L2	L3	L4	L5	L9	Cd	Cs	DaN/ μm	Oil	
01	A	20	5	3	33	57,5	45	4x6,6	-	-	38	45	10	35	-	-	-	-	1508	2239	-	M6	012
14	D 11	20	10	3	36	58	47	6x6,6	-	-	44	53	14	39	-	-	-	-	1498	2238	-	М6	423
02	A	20	10	3	38	62	51	4x6,6	-	-	40	53	14	39	-	-	-	-	1498	2238	-	M6	013
03																							
04	B 37	25	5	3	38	63	50	4x6,6	-	-	42	45	10	35	-	-	-	-	1684	2827	-	M6	014
05	B	25	5	4	38	63	50	4x6,6	-	-	42	51	10	41	-	-	-	-	2157	3769	-	М6	015
07	A	25	10	3	43	65	55	4x6,6	-	-	45	51,5	14	37,5	-	-	-	-	1678	2827	-	M6	262
80	© 1/11	25	10	4	40	62	51	6x6,6	-	-	48	62	12	50	-	-	-	-	2150	3770	-	М6	263
09	A	25	10	4	43	65	55	4x6,6	-	-	45	62	14	48	-	-	-	-	2150	3770	-	M6	264
20																							
21	A	25	15	3	43	65	55	4x6,6	-	-	45	66	14	52	-	-	-	-	1674	2826	-	M6	306
22																							
23	D 11	25	20	2	43	65	55	6x6,6	-	-	50	61	14	47	-	-	-	-	1167	1884	-	M6	321
10	A 1	25	20	2	43	65	55	4x6,6	-	-	45	61	14	47	-	-	-	-	1167	1884	-	М6	018
11																							
12	B 1	32	20	2	50	80	65	4x8,7	-	-	54	61	14	47	16	-	-	-	1314	2434	-	М6	021
24	B	32	20	3	50	80	65	4x8,7	-	-	54	81	14	67	16	-	-	-	1971	3651	-	M6	454
13	B 1	32	25	2	50	80	65	4x8,7	-	-	54	71	14	57	16	-	-	-	1305	2434	-	M6	022


(1) - Disponibile anche con passo sinistrorso (11) SENZA foro olio sottoflangia (37) Con passo sinistro disponibile SENZA foro Oil M4



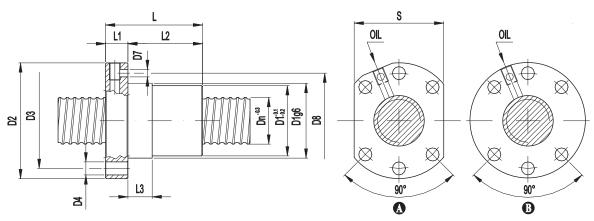
Velocità limite del sistema vite-madrevite: $n \times Dn \le 90000 \quad (n = giri/min \quad Dn = diametro nominale)$

_								vell	JUITA III	mite del s	sistem	a vite	IIIaui	evite:	וע ג וו	1 \(\) 701	ו) טטע	$i = y_{111}$	ווט וווווו	= ulalile	LI U HUH	imate,	_
	N 0	Dn	Passo	N° Circ.		D	IAME	TR0	mm		S		L	.UNGI	HEZZ	'A mr	n		CARIC	0 DaN	Rd DaN/	Oil	
	T E	mm mm	sfere	D1g6	D2	D3	D4	D5	D7	mm	L	L1	L2	L3	L4	L7	L8	Cd	Cs	μm	Oit		
01	A	20	5	3	33	-	45	6,6	10,5	3	-	45	10	35	-	6	39	22,5	1508	2239	-	M6	0:
02																							
03	B	20	5	3	33	-	45	6,6	-	-	-	45	10	35	-	-	39	22,5	1508	2239	-	M6	02
)4																							
05																							



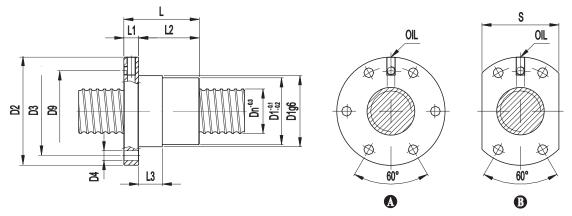
velocità limite del s	sistema vi	ite-maarevite:	חע א ח	≥ 90000	(n = giri/m)	n Du = aig	ametro non	iinate)
								$\overline{}$

	N 0	Dn	Passo	N° Circ.		D	IAME	TR0 r	mm		S		L	UNG	HEZZ	'A mr	n		CARIC	0 DaN	Rd DaN/	Oil	
	T E	mm	mm	sfere	D1g6	D2	D3	D4	D5	D6	mm	L	L1	L2	L3	L4	L5	L6	Cd	Cs	μm	Oit	
06		25	5	4	38	63	50	5x6,6	-	-	58	51	10	41	-	-	-	52	2157	3769	-	M6	025
07																							
80																							
09																							
10																							



_								Velor	<u>cità lir</u>	nite del :	sistem	a vite	-madr	evite:	n x Dr	n ≤ 90	<u>000 (r</u>	ı = giri	i/min Dn	= diame	tro nom	<u>iinale</u> '	<u>)</u>
	N 0	Dn	Passo	N° Circ.		DI	AME	TRO n	nm		S		L	UNG	HEZZ	<u>'</u> A mr	n		CARIC	0 DaN	Rd -DaN/	Oil	
	T E	mm	mm	1	D1g6	D2	D3	D4	D5	D7	mm	L	L1	L2	L3	L4	L5	L6	Cd	Cs	μm	Oit	
01	D 1	20	5	3	36	58	47	6x6,6	-	4	44	45	10	35	-	-	-	-	1508	2239	-	M6	212
02	A	20	5	4	36	58	47	6x6,6	-	-	44	50	10	40	-	-	-	-	1876	2985	-	М6	402
20	A	20	10	4	36	58	47	6x6,6	-	-	44	65	14	51	15	-	-	-	1917	2984	-	M6	457
23																							
03	B	25	10	3	43	62	51	6x6,6	-	-	48	51	10	41	-	-	-	-	1678	2827	-	M6	027
04																							
05	B 1	32	5	4	50	80	65	6x9	-	-	62	53	12	41	12	-	-	-	2412	4868	-	M6	028
25	0	32	5	5	50	80	65	6x9	-	-	62	58	12	46	16	-	-	-	2932	6085	-	М6	409
07	© 1	32	10	3	50	80	65	4x9	-	-	54	51	14	37	16	-	-	-	1879	3651	-	M6	266
08	B 1	32	10	4	50	80	65	6x9	-	-	62	62	14	48	16	-	-	-	2505	4868	-	М6	033
09	© 1	32	10	4	50	80	65	4x9	-	-	54	62	14	48	16	-	-	-	2505	4868	-	M6	268
11	B 1	32	20	2	50	80	65	6x9	-	-	62	61	14	47	16	-	-	-	1314	2434	-	М6	213
12	B	32	20	3	50	80	65	6x9	-	-	62	81	14	67	16	-	-	-	1971	3651	-	M6	468
26																							

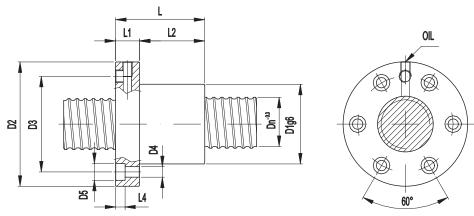
(1) - Disponibile anche con passo sinistrorso



Velocità limite del sistema vite-madrevite: n x Dn ≤ 90000 (n = giri/min Dn = diametro nominale)

								veluc	ita tiii	nte det s	sistem	a vite	Tillaui	evite:	וט ג וו	$1 \geq 700$	וו) טטט	= 9111/	ווט ווווווי	= ulaine	1101110111	mate)	_
	N 0	Dn	Passo	N° Circ.		DI	AME ⁻	ΓRO n	nm		S		L	UNG	HEZZ	A mr	n		CARIC	0 DaN	Rd DaN/	Oil	
	T E	mm	mm	sfere	D1g6	D2	D3	D4	D7	D8	mm	L	L1	L2	L3	L4	L5	L6	Cd	Cs	μM	Oit	
02	A 11	25	5	3	40	62	51	6x6,6	-	51	48	47	12	35	12	-	-	-	1508	2239	-	M6	602
01	A 1	25	5	4	40	62	51	6x6,6	4	51	48	52	12	40	12	-	-	-	2157	3769	-	M6	026
03	B	32	5	6	50	80	65	6x9	5	65	-	64	12	52	10	-	-	-	3419	7302	-	M6	210
04	A	32	5	6	50	80	65	6x9	-	-	62	64	12	52	16	-	-	-	3419	7302	-	M6	030

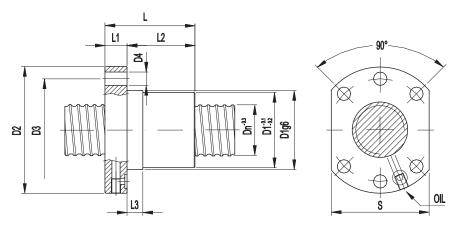
(1) - Disponibile anche con passo sinistrorso (11) - SENZA foro olio sottoflangia


Velocità limite del sistema vite-madrevite: $n \times Dn \le 90000 \text{ (n = giri/min } Dn = diametro nominale)}$

	N 0	Dn	Passo	N° Circ.		D	IAME	TR0 r	nm		S		L	UNG	HEZZ	A mr	n		CARIC	0 DaN	Rd DaN/	Oil	
	T E	mm	mm	sfere	D1g6	D2	D3	D4	D7	D9	mm	L	L1	L2	L3	L4	L5	L6	Cd	Cs	μm	Oit	
06	A 1	32	5	4	48	73	60	6x6,6	-	55	-	51	10	41	16	-	-	-	2412	4868	-	M6	036
07	B 1	32	5	4	48	73	60	4x6,6	-	55	52	51	10	41	16	-	-	-	2412	4868	-	М6	041
08	A	32	5	6	48	73	60	6x6,6	-	55	-	62	10	52	16	-	-	-	3419	7302	-	M6	043
09																							

(1) - Disponibile anche con passo sinistrorso

10

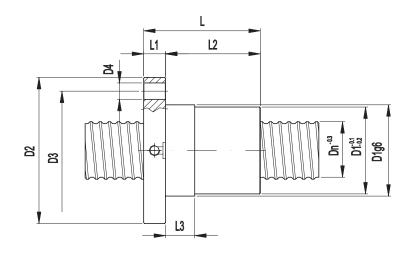

	N 0	Dn	Passo	N° Circ		DI	AME ⁻	TRO n	nm		S		L	.UNG	HEZZ	'A mr	n		CARIC	O DaN	Rd	0:1	
	T E	mm	mm	Circ. sfere	D1g6	D2	D3	D4	D5	D6	mm	L	L1	L2	L3	L4	L5	L6	Cd	Cs	DaN/ μm	Oil	
12	6	32	5	/1	50	78	60	6×6 6	10 5	_	_	56	15	/ ₁ 1	_	6	_	_	2/.12	4868	_	M6	0:

02 6 32 5 4 50 78 60 6x6,6 10,5 - - 56 15 41 - 6 - - 2412 4868 - M6 01

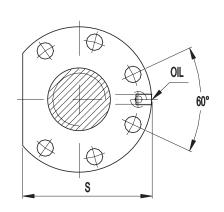
03

04

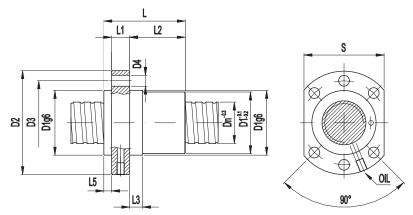
(6) - Foro olio su flangia M8x1



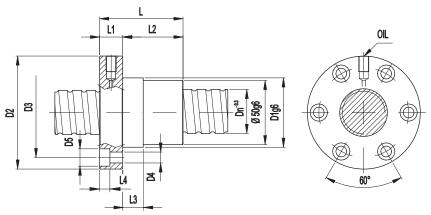
Velocità limite del sistema vite-madrevite: n x Dn \leq 90000 (n = giri/min Dn = diametro nominale)


	N 0	Dn	Passo	N° Circ.		D	IAME	TR0 r	mm		S		L	UNG	HEZZ	A mr	n		CARIC		Rd DaN/	Oil	
	T E	mm	mm	sfere	D1g6	D2	D3	D4	D5	D6	mm	L	L1	L2	L3	L4	L5	L6	Cd	Cs	μm	Oit	
06	7	32	6	5	50	80	65	6x9	-	-	62	64	12	52	16	-	-	-	2920	6085	-	M6	211
07																							

(7) - Foro olio sottoflangia ø4 - lamatura ø9, profondità 1,4 mm

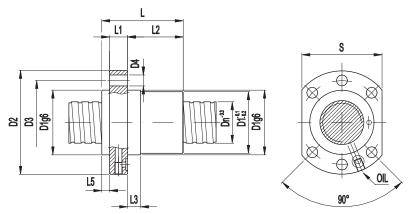


(⁷) - Foro olio sottoflangia ø4 - lamatura ø9, profondità 1,4 mm



N 0	Dn	Passo	N°		DI	4ME7	ΓR0 n	nm		S		L	UNG	HEZZ	'A mr	n		CARIC	0 DaN	Rd	0.1
T E	mm	mm	Circ. sfere	D1g6	D2	D3	D4	D5	D6	mm	L	L1	L2	L3	L4	L5	L6	Cd	Cs	DaN/ μm	Oil
7	32	6	5	50	80	65	6x9	-	-	71	64	12	52	16	-	-	-	2920	6085	-	M6
7	32	10	4	50	80	65	6x9	-	-	71	62	14	48	16	-	-	-	2505	4868	-	M6

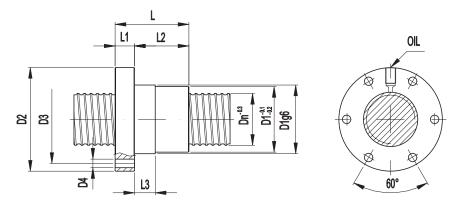
_								veloc	ıta tim	nte det s	sistem	a vite-	maure	evite:	וע א וו	$1 \geq 900$	וו) טטנ	= 9111	min Dn	= uiame	110 110111	mate,	<u>/</u>
	N 0	Dn	Passo	N° Circ.		DI	4ME7	ΓRO n	nm		S		L	UNG	HEZZ	'A mr	n		CARIC	0 DaN	Rd DaN/	Oil	
	T E	mm	mm	sfere	D1g6	D2	D3	D4	D5	D6	mm	L	L1	L2	L3	L4	L5	L6	Cd	Cs	μm	Oit	
01		32	10	3	50	80	65	6x9	-	-	62	57	14	37	10	-	6	-	1879	3651	-	M6	269
02																							
03		32	10	4	50	80	65	6x9	-	-	62	68	14	48	16	-	6	-	2505	4868	-	M6	273
04		32	10	5	50	80	65	6x9	-	-	62	80	14	60	16	-	6	-	3131	6085	-	M6	323
05																							



Velocità limite del sistema vite-madrevite: n x Dn < 90000 (n = giri/min Dn = diametro nominale)

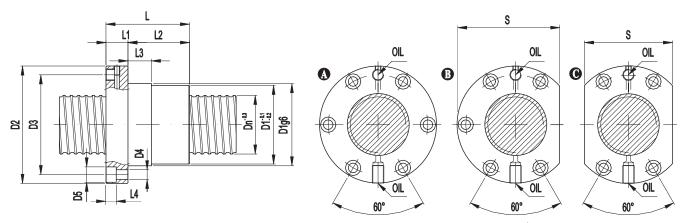
								Velo	cità li	mite del s	<u>sistem</u>	a vite-	madre	evite:	n x Dr	$1 \leq 900$	000 (n	= giri	min Dn	<u>= diamet</u>	ro nom	inale)	-
	N O	Dn	Passo	N° Circ.		D	IAME	ETRO r	nm		S		L	UNG	HEZZ	A mr	n		CARIC	0 DaN	Rd DaN/	Oil	
	T E	mm	mm	sfere	D1g6	D2	D3	D4	D5	D6	mm	L	L1	L2	L3	L4	L5	L6	Cd	Cs	μM	Oit	
06		32	10	3	54	88	70	6x8,5	13,5	-	-	65	18	47	16	8	-	-	1879	3651	-	-	040
07																							
08																							
09																							
10																							

Flanged single nut



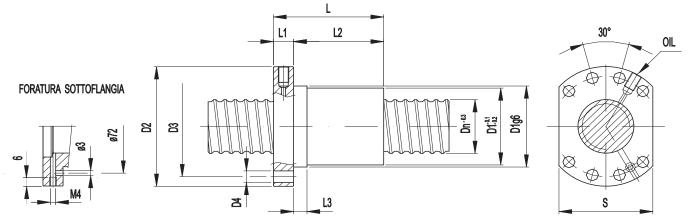
	N 0	Dn	Passo	N° Circ.		DI	AMET	ΓRO n	nm		S		L	UNGI	HEZZ	'A mr	n		CARIC	0 DaN	Rd DaN/	Oil	
	T E	mm	mm		D1g6	D2	D3	D4	D5	D6	mm	L	L1	L2	L3	L4	L5	L6	Cd	Cs	μm	Oit	
)1	7	32	12	4	50	80	65	6x9	-	-	62	78,6	14	58,6	10	-	6	-	2501	4868	-	M6	28

01 ⁷ 32 12 4 50 80 65 6x9 - - 62 78,6 14 58,6 10 - 6 - 2501 4868 - M6 285


04 05

Velocità limite del sistema vite-madrevite: $n \times Dn \le 90000$ (n = giri/min Dn = diametro nominale)

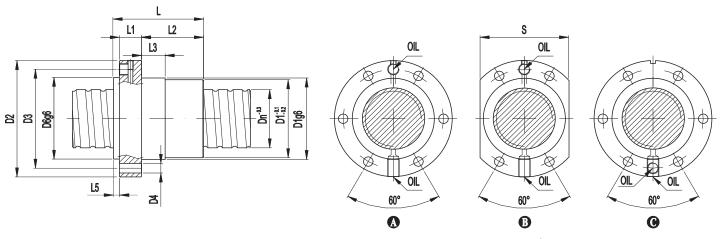
	N 0	Dn	Passo	N° Circ.		D	IAME	TR0 r	nm		S		L	.UNG	HEZZ	'A mr	n		CARIC	O DaN	Rd DaN/	Oil	
	T E	mm	mm		D1g6	D2	D3	D4	D5	D6	mm	L	L1	L2	L3	L4	L5	L6	Cd	Cs	μM	Oit	
06		40	5	4	53	80	68	6x6,6	-	-	-	57	15	42	16	-	-	-	2649	6123	-	8x1	044
07																							



Velocità limit	te del sister	na vite-mad	revite: n x Dr	n≤90000 (n	= giri/min	Dn = diamet	tro nom	inale)

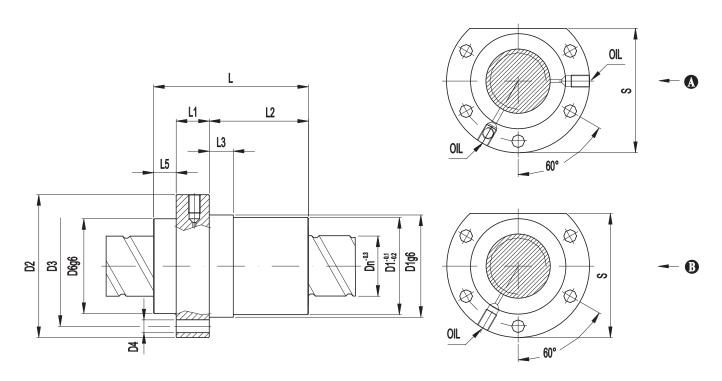
	N O T E	Dn mm	Passo mm	N° Circ. sfere	D1g6	DIA	AME ⁻	ΓR0 r		D6	S mm	L				'A mn		L6	CARIC	O DaN	Rd DaN/ μm		
			_													_							
01	A 1	40	5	4	56	80	68	6x6,6	10,5	-	-	57	15	42	16	7	-	-	2649	6123	-	8x1	045
02	© 1	40	5	4	56	80	68	4x6,6	10,5	-	60	57	15	42	16	7	-	-	2649	6123	-	8x1	046
03	A	40	5	6	56	80	68	6x6,6	10,5	-	-	67	15	52	16	7	-	-	3755	9184	-	8x1	047
04	•	40	5	6	56	80	68	4x6,6	10,5	-	60	67	15	52	16	7	-	-	3755	9184	-	8x1	048
05	B	40	5	6	56	80	68	5x6,6	10,5	-	70	67	15	52	16	7	-	-	3755	9184	-	8x1	215
06																							
07	A	50	5	6	68	98	82	6x8,5	13,5			67	15	52	16	8,5	-	-	4107	11536	-	8x1	049

(1) - Disponibile anche con passo sinistrorso

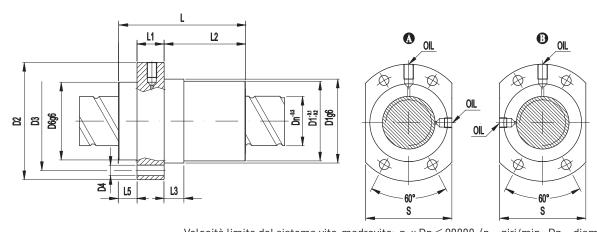


Velocità limite del sistema vite-madrevite: $n \times Dn \le 90000$ (n = giri/min Dn = diametro nominale)

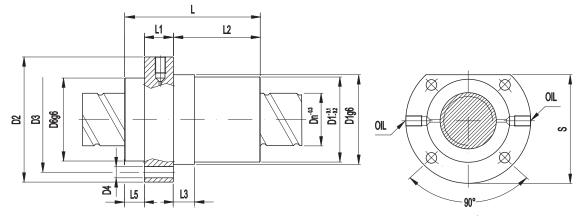
	N 0	Dn	Passo	N° Circ.		D	IAME	TR0 r	nm		S		L	UNGI	HEZZ	'A mr	n		CARIC	0 DaN	Rd DaN/	Oil	
	T E	mm	mm	sfere	D1g6	D2	D3	D4	D5	D6	mm	L	L1	L2	L3	L4	L5	L6	Cd	Cs	μm	Oit	
08	1	40	5	4	63	93	78	8x9	-	-	70	57	15	42	10	-	-	-	2649	6123	-	8x1	214
10	8	40	5	5	63	93	78	8x9	-	-	70	60	15	45	16	-	-	-	3311	7653	-	8x1	572
09	8	40	6	6	63	93	78	8x9	-	-	70	75	15	60	16	-	-	-	3973	9184	-	8x1	216


^{(1) -} Disponibile anche con passo sinistrorso (8) - Senza foro sottoflangia e oil M4

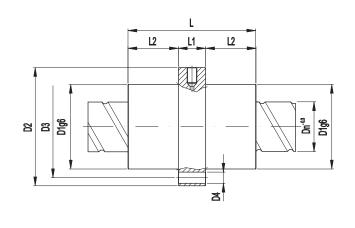
			_		푈						-	60°					60°		~	60°			
												A)				B			0			
[1			Veloc	ità lim	ite del :	sistem I	na vite-	madr	evite:	n x Dı	n ≤ 900	000 (n	= giri	/min Dn	= diamet	tro nomi	inale)	l
	N 0	i .	Passo	N° Circ.		DI	AME ⁻	ΓRO n	nm		S		L	UNG	HEZZ	'A mr	n		CARIC	0 DaN	Rd DaN/	Oil	
	T E	mm	mm	1	D1g6	D2	D3	D4	D5	D6	mm	L	L1	L2	L3	L4	L5	L6	Cd	Cs	μm		
01	A	40	10	3	63	95	78	6x9	-	62	-	88	13	69	16	-	6	-	4673	8324	-	8x1	050
02	B	40	10	3	63	95	78	4x9	-	62	73	88	13	69	16	-	6	-	4673	8324	-	8x1	051
03	A	40	10	4	63	95	78	6x9	-	62	-	99,5	14	79,5	16	-	6	-	5985	11099	-	8x1	052
04	B	40	10	4	63	95	78	4x9	-	62	75	99,5	14	79,5	16	-	6	-	5985	11099	-	8x1	053
05																							
06	A	50	10	4	72	110	90	6x11	-	72	-	103,5	16	80,5	16	-	7	-	6640	13946	-	8x1	054
07	B	50	10	4	72	110	90	4x11	-	72	80	103,5	16	80,5	16	-	7	-	6640	13946	-	8x1	055
80	A	50	10	6	72	110	90	6x11	-	72	-	127	16	104	16	-	7	-	9411	20919	-	8x1	056
09																							
10	0	63	10	6	85	125	105	6x11	-	85	-	126	16	103	16	-	7	-	10396	26468	-	8x1	057
11	•	63	10	6	90	125	105	6x11	-	90	-	126	16	103	16	-	7	-	10396	26468	-	8x1	651
12																							
13																							
14																							
15																							
16																							
17																							
18																							
19																							
20																							
21																							
22																							
23																							

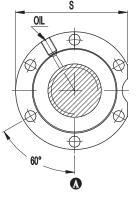


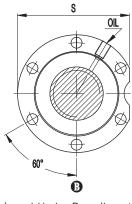
г								Veloc	<u>ità lim</u>	ite del s	sistem	a vite	-madr	evite:	n x Dı	n ≤ 90	<u>000 (r</u>	ı = giri	/min Dn	= diame	tro nom	inale)	4
	N 0	Dn	Passo	N° Circ.		DI	AME ⁻	TR0 m	nm		S		L	UNGI	HEZZ	'A mr	n		CARIC	0 DaN	Rd DaN/	Oil	
	T E	mm	mm		D1g6	D2	D3	D4	D5	D6	mm	L	L1	L2	L3	L4	L5	L6	Cd	Cs	μm	Uit	
01	A	40	20	3	68	95	80	5x8,5	-	63	82,5	105	22	68	16	-	15	-	4648	8324	-	8x1	058
02																							
03	B 1	40	40	2	68	95	80	5x8,5	-	63	82,5	116	22	81	16	-	13	-	3211	5549	-	8x1	060
04																							
05																							
06																							
07																							
08																							
09																							
10																							
11																							
12																							
13																							
14																							
15																							
16																							
17																							


(¹) - Disponibile anche con passo sinistrorso

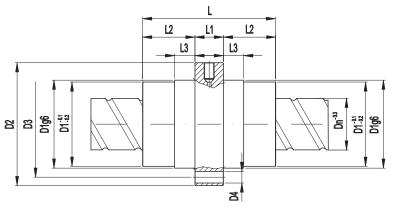
Velocità limite del sistema vite-madrevite: $n \times Dn \le 90000 \text{ (n = giri/min } Dn = diametro nominale)}$

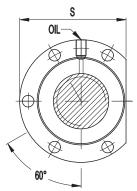

N 0	Dn	Passo	N° Circ.		DI	AME ⁻	TRO n	nm		S		L	UNG	HEZZ	'A mr	n		CARIC	0 DaN	Rd DaN/	Oil	
T E	mm	mm	sfere	D1g6	D2	D3	D4	D5	D6	mm	L	L1	L2	L3	L4	L5	L6	Cd	Cs	μM	Oit	
A	40	20	3	68	95	80	4x8,5	-	63	70	105	22	68	16	-	15	-	4648	8324	-	8x1	062
2																						
B	40	40	2	68	95	80	4x8,5	-	63	70	116	22	81	16	-	13	-	3211	5549	-	8x1	064



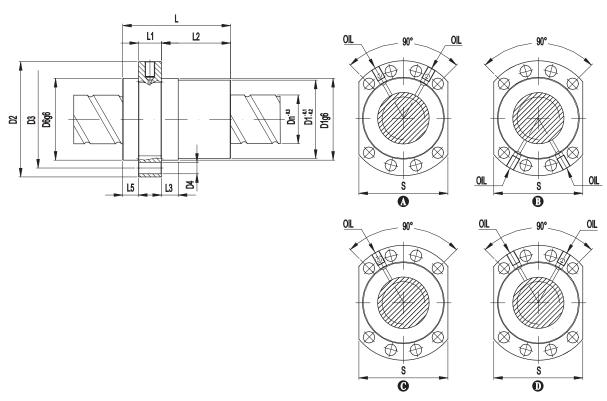

Velocità limite del sistema vite-madrevite: $n \times Dn \le 90000$ (n = giri/min Dn = diametro nominale)

	N 0	Dn	Passo	N°		D	IAME	TR0 r	nm		S		L	UNG	HEZZ	A mr	n		CARIC	0 DaN	Rd	0:1	
	T E	mm	mm	Circ. sfere	D1g6	D2	D3	D4	D5	D6	mm	L	L1	L2	L3	L4	L5	L6	Cd	Cs	DaN/ μm	Oil	
06		40	40	2	68	95	82	4x8,5	-	63	82.5	116	22	81	16	-	13	-	3211	5549	-	8x1	061
07																							
08																							



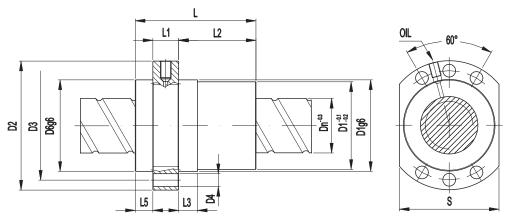


	N O T F	Dn mm	Passo mm	N° Circ. sfere	D1g6		AME1	TRO n		D6	S	L		UNGI				L6	CARIC		Rd DaN/ μm		
01	A	40	20	3	68	95	82	6x9	_	_	90	103	22	40,5	_	_	_	_	4648	8324	_	8x1	065
02	B	40	40	2	68	95		6x9	-	-	90	116	22	47	-	-	-	-	3211	5549	-	8x1	066
03																							
04	B	50	40	2	78	112	93	6x9	-	-	107	116	22	47	-	-	-	-	3594	6973	-	8x1	067
05																							

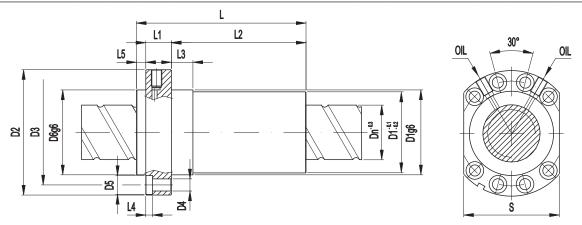


Velocità limite del	sistema	vite-madre	vite: n	$x Dn \le 900$	100 (n = giri <i>i</i>	/min Dn	= diamet	ro nom	inale)

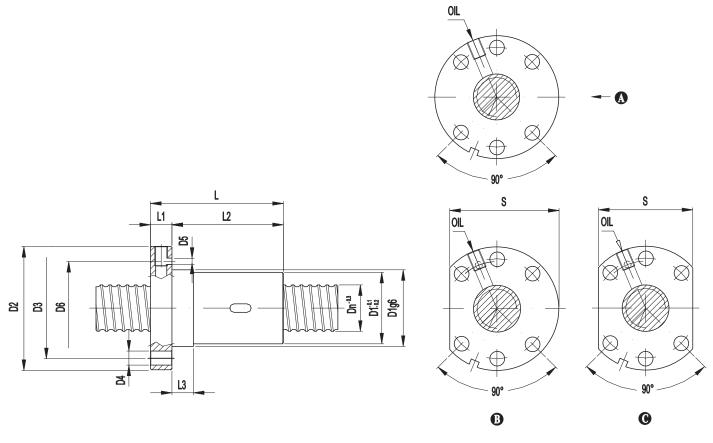
	N 0	Dn	Passo	N° Circ.		D	IAME	TRO r	mm		S		L	UNG	HEZZ	'A mr	n		CARIC	0 DaN	Rd DaN/	Oil	
	T E	mm	mm	sfere	D1g6	D2	D3	D4	D5	D6	mm	L	L1	L2	L3	L4	L5	L6	Cd	Cs	μm	Oit	
06		40	20	3	68	95	82	5x9	-	-	82,5	103	22	40,5	16	-	-	-	4648	8324	-	8x1	068
07																							



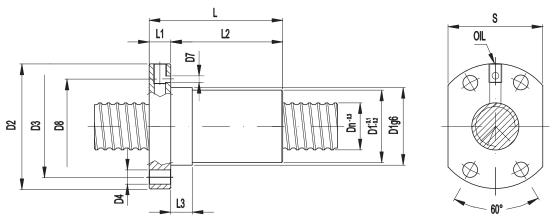
								Veloc	ità lim	ite del	sistem	na vite-	madr	evite:	n x Dı	$1 \le 900$	000 (n	= giri	/min Dn	= diame	tro nom	inale))
	N 0	Dn	Passo	N° Circ.		DI	AME ⁻	TRO n	nm		S		L	UNG	HEZZ	'A mr	n		CARIC	0 DaN	Rd DaN/	Oil	
	T E	mm	mm	sfere	D1g6	D2	D3	D4	D5	D6	mm	L	L1	L2	L3	L4	L5	L6	Cd	Cs	μm	Oit	
01	A	40	10	4	63	93	78	8x9	-	62	70	99,5	14	79,5	16	-	6	-	5985	11099	-	8x1	069
20	© 11	40	20	3	63	93	78	8x9	-	63	71	105	19	79	16	-	7	-	4648	8324	-	8x1	310
02	B	40	20	3	68	95	78	8x9	-	63	70	105	22	68	16	-	15	-	4648	8324	-	8x1	070
04	©	50	5	6	75	110	93	8x11	-	75	85	75	16	52	16	-	7	-	4107	11536	-	8x1	217
05	D 14	50	10	4	75	110	93	8x11	-	75	85	103,5	16	80,5	16	-	7	-	6640	13946	-	8x1	075
21	D 14	50	10	6	75	110	93	8x11	-	75	85	127	16	104	16	-	7	-	9411	20919	-	8x1	305
06	A 11	50	20	3	75	110	93	8x11	-	75	85	103	22	66	16	-	15	-	5166	10459	-	8x1	281
07	A 11	50	20	3	78	110	93	8x11	-	75	85	103	22	66	16	-	15	-	5166	10459	-	8x1	071
08	D ¹¹	50	20	4	78	110	93	8x11	-	75	85	126	22	89	16	-	15	-	6888	13945	-	8x1	076
09	A 11	50	20	4	75	110	93	8x11	-	75	85	126	22	89	16	-	15	-	6888	13945	-	8x1	301
10	A 11	50	40	2	78	110	93	8x11	-	75	85	116	22	79	16	-	15	-	3594	6973	-	8x1	072
22	D 15	63	10	6	90	125	108	8x11	-	90	95	126	18	101	16	-	7	-	10396	26468	-	8x1	325
26	D 11	63	10	8	90	125	108	8x11	-	90	95	152	18	127	16	-	7	-	13861	35290	-	8x1	504
12	A 11	63	20	3	90	125	108	8x11	-	90	100	103	22	66	16	-	15	-	5714	13234	-	8x1	073
23	D ¹¹	63	20	4	90	125	108	8x11	-	90	100	126	22	89	16	-	15	-	7618	17645	-	8x1	327
24	A 11	63	20	5	90	125	108	8x11	-	90	100	148	22	111	16	-	15	-	9523	22056	-	8x1	329
27																							


(11) - Senza foro olio sottoflangia (14) - Foro olio sottoflangia ø3 (15) - Foro olio sottoflangia ø4

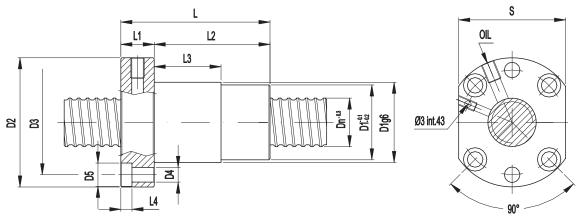
								¥0100	rea cirri	ito dot t	310 (0111	u vico	muun	OVICO.	11 X D1	1 - 70	000 (11	- 91117	ווט וווווו	- ulullic	CI O IIOIII	mato,
	N 0	Dn	Passo	N° Circ.		DI	AME1	ΓR0 n	nm		S		L	UNG	HEZZ	A mr	n		CARIC	0 DaN	Rd DaN/	Oil
	T E	mm	mm	sfere	D1g6	D2	D3	D4	D5	D6	mm	L	L1	L2	L3	L4	L5	L6	Cd	Cs	μM	
01		40	20	3	68	95	80	6x9	_	63	70	105	22	68	16	_	15	_	4648	8324	_	8x1 0
02		40	20	3	00	73	00	0.77		00	70	103	LL	00	10		10		4040	0324		OXI


03

Velocità limite del sistema vite-madrevite: $n \times Dn \le 90000$ (n = giri/min Dn = diametro nominale)

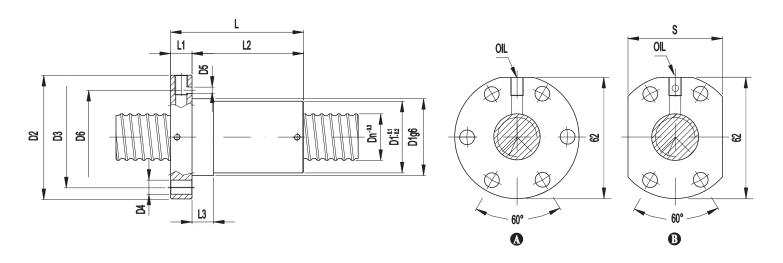

	N 0	Dn	Passo	N° Circ.		D	IAME	TR0 r	nm		S		L	.UNGI	HEZZ	A mn	n		CARIC	0 DaN	Rd DaN/	Oil	
	T E	mm mm sfere	D1g6	D2	D3	D4	D5	D6	mm	L	L1	L2	L3	L4	L5	L6	Cd	Cs	μm	Uit			
06		40	20	4	63	93	78	8x9	14	63	71	126	19	100	16	5	7	-	6197	11099	-	8x1	078
07																							
08																							
09																							

			1	1	ı			Veloci	tà lim	ite del s	sistem	a vite	-madr	evite:	n x Dr	n ≤ 90	000 (r	ı = giri.	/min Dn	= diame	tro nom	inale)
	N 0	Dn	Passo	N° Circ.		DI	AME	TRO m	nm		S		L	UNG	HEZZ	'A mr	n		CARIC	0 DaN	Rd DaN/	Oil	
	T E	mm	mm	1	D1g6	D2	D3	D4	D5	D6	mm	L	L1	L2	L3	L4	L5	L6	Cd	Cs	μm	Oit	
01	B 36	20	5	3+3	36	58	47	6x6,6	3	44	51	62	10	52	10	-	-	-	1508	2239	78	M6	1:
02	A 11	20	5	3+3	36	58	47	6x6,6	-	-	-	62	10	52	10	-	-	-	1508	2239	78	М6	13
03	© 36	20	5	3+3	36	58	47	6x6,6	3	44	44	62	10	52	10	-	-	-	1508	2239	78	M6	13
04	A 11	20	5	3+3	36	58	47	6x6,6	-	-	-	67	15	52	10	-	-	-	1508	2239	78	М6	14
05																							
06																							
07																							
80																							
09																							
10																							
11																							
12																							
13																							
14																							
15																							
																							٦

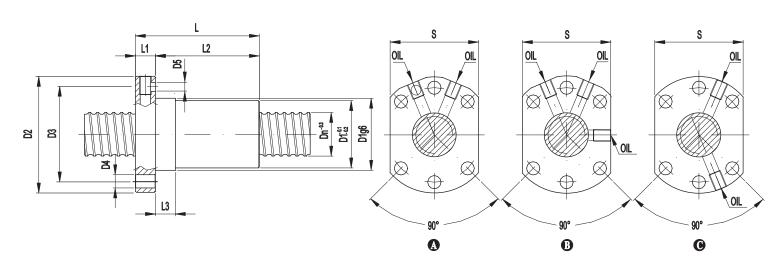


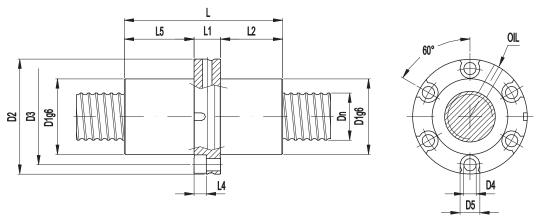
Velocità limite del si	istema vite-madrevite: ı	$n \times Dn \le 90000 $ ($n = giri/min$	Dn = diametro nominale)

	N 0	Dn	Passo	N° Circ.		DI	AME ⁻	TR0 m	m		S		L	UNG	HEZZ	'A mr	n		CARIC	0 DaN	Rd DaN/	Oil	
	T E	mm	mm	sfere	D1g6	D2	D3	D4	D7	D8	mm	L	L1	L2	L3	L4	L5	L6	Cd	Cs	μm	Oit	
01		20	5	3+3	33	57	45	4X6,6	4	45	37	62	10	52	10	-	-	-	1508	2239	78	M6	140
02																							

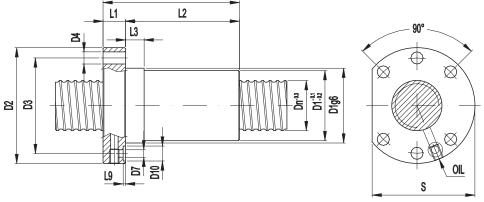

04

Velocità limite del sistema vite-madrevite: $n \times Dn \le 90000 (n = giri/min Dn = diametro nominale)$


								Velo	cita limii	te del s	sistem	a vite-	-madr	<u>evite:</u>	n x Dr	<u>1 ≤ 900</u>	<u> </u>	= giri/	min Dn	<u>= diamet</u>	ro nom	<u>inale)</u>	
	N 0	Dn	Passo	N° Circ.		D	IAME	TR0 r	mm		S		L	UNGI	HEZZ	A mn	n		CARIC	0 DaN	Rd DaN/	Oil	
	T E	mm	mm	sfere	D1g6	D2	D3	D4	D5	D6	mm	L	L1	L2	L3	L4	L5	L6	Cd	Cs	μm	Oit	
06		20	5	3+3	36	58	47	6x7	4x10,5	-	48	67	15	52	30	5	-	-	1508	2239	78	M6	144
07																							
08																							
09																							


N 0	Dn	Passo	N°		D	IAME	TRO r	mm		S		L	.UNG	HEZZ	'A mr	n		CARIC	0 DaN	Rd	0.1
T E	mm	mm	Circ. sfere	D1g6	D2	D3	D4	D5	D6	mm	L	L1	L2	L3	L4	L5	L6	Cd	Cs	DaN/ μm	Oil
A	25	5	3+3	38	63	50	6x6,6	-	-	-	62	10	52	16	-	-	-	1684	2827	98	M6
B	25	5	3+3	38	63	50	4x6,6	3	50	42	62	10	52	16	-	-	-	1684	2827	98	М6
A	25	5	4+4	38	63	50	6x6,6	-	-	-	74	10	64	16	-	-	-	2245	3769	118	М6

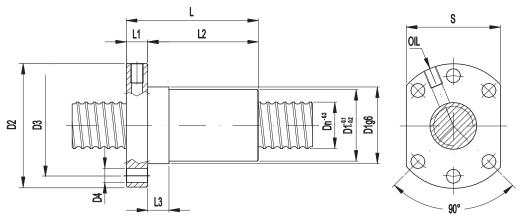
N 0	Dn	Passo	N°		DI	AME	TR0 n	nm		S		L	UNG	HEZZ	A mr	n		CARIC	0 DaN	Rd	0
T E	mm	mm	Circ. sfere	D1g6	D2	D3	D4	D5	D6	mm	L	L1	L2	L3	L4	L5	L6	Cd	Cs	DaN/ μm	Oil
A 1	25	5	3+3	40	62	51	6x6,6	-	4	48	62	10	52	10	-	-	-	1684	2827	98	M6
A 1	25	5	4+4	40	62	51	6x6,6	-	4	48	74	10	64	10	-	-	-	2245	3769	118	М6
B 11	32	5	4+4	50	80	65	6x9	-	-	62	79	12	67	10	-	-	-	2412	4868	148	M6
0	32	6	3+3	50	80	65	6x9	-	-	62	72	12	60	16	-	-	-	1883	3651	80	M6


	N 0	Dn	Passo	N° Ciro		DI	AME	ΓR0 n	nm		S		L	UNG	HEZZ	'A mr	n		CARIC	0 DaN	Rd DaN/	Oil
	T E	mm	mm	Circ. sfere	D1g6	D2	D3	D4	D5	D6	mm	L	L1	L2	L3	L4	L5	L6	Cd	Cs	μm	UIL
01		25	5	3+3	40	61	51	6x6,6	10,5	-	-	84	14	33	-	6,5	37	-	1684	2827	98	ø5 2

03

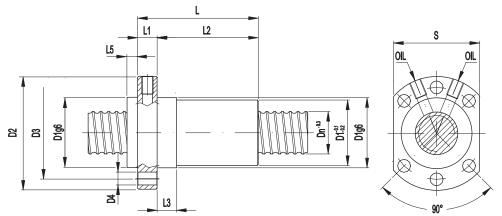
02

04 05


> L L1 L2 90°

Velocità limite del sistema vite-madrevite: n x Dn ≤ 90000 (n = giri/min Dn = diametro nominale)

	N 0	Dn	Passo	N° Ciro		D	IAME	TR0 r	nm		S		L	.UNG	HEZZ	'A mn	n		CARIC		Rd	Oil	
	T E	mm	mm	Circ. sfere	D1g6	D2	D3	D4	D7	D10	mm	L	L1	L2	L3	L4	L5	L9	Cd	Cs	DaN/ μm	UIL	
06		25	6	3+3	40	62	51	6x6,5	4	8	-	73	12	61	-	-	-	-	1684	2827	98	M5	147
07																							
08																							

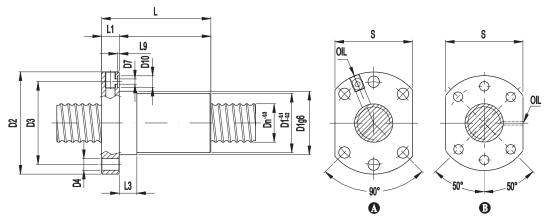


	N 0	Dn	Passo	N°		DI	AME ⁻	ΓR0 m	nm		S		L	UNG	HEZZ	A mr	n		CARIC		Rd	0:1	
	T E	mm	mm	Circ. sfere	D1g6	D2	D3	D4	D5	D6	mm	L	L1	L2	L3	L4	L5	L6	Cd	Cs	DaN/ μm	Oil	
01		32	5	4+4	50	69	59	6x6,6	-	-	62	79	12	67	10	-	-	-	2412	4868	148	M6	25
02																							

04

06

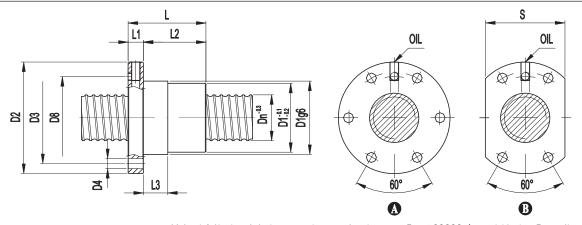
Velocità limite del sistema vite-madrevite: n x Dn \leq 90000 (n = giri/min Dn = diametro nominale)


	N 0	Dn	Passo	N° Circ.		D	IAME	TRO r	nm		S		L	UNGI	HEZZ	A mn	n		CARIC		Rd DaN/	Oil	
	T E	mm	mm	sfere	D1g6	D2	D3	D4	D5	D6	mm	L	L1	L2	L3	L4	L5	L6	Cd	Cs	μM	Oit	
03	15	32	10	3+3	50	80	65	6x9	-	-	62	91	14	71	16	-	6	-	1879	3651	116	M6	278
07																							

08

10

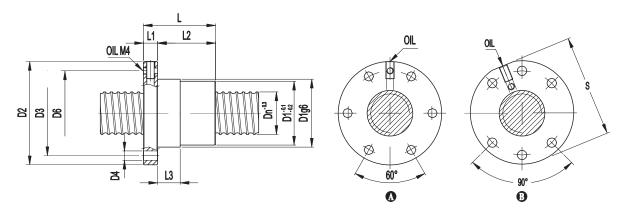
(15) - Foro olio sottoflangia ø4



Velocità limite de	l sistema vite-madrevite	$n \times Dn < 90000$	(n - airi/min	Dn = diametro nominale)
vetocita tillite de	i Sistellia vite iliaulevite.		(II – UIII/IIIIII	DII – diailieti o lioililiate/

								VELUC	ita tiiii	ite det s	31316111	a vite	maur	evile.	וט א וו	1 2 700	וו) טטכ	- y111/	ווט וווווו	- ulaille	110110111	illate)	
	N 0	Dn	Passo	N° Circ.		DI	AME ⁻	TRO n	nm		S		L	UNG	HEZZ	A mr	n		CARIC		Rd DaN/	Oil	
	T E	mm	mm		D1g6	D2	D3	D4	D7	D10	mm	L	L1	L2	L3	L4	L5	L6	Cd	Cs	μM	Oit	
01	A	32	6	4+4	50	80	65	6x9	4	9	62	87	12	75	16	-	-	1,3	2410	4868	148	M6	15
02	B	32	6	4+4	48	72,8	58	6x6.6	-	-	60	90	15	75	15	-	-	-	2410	4868	148	ø3	40
00																							

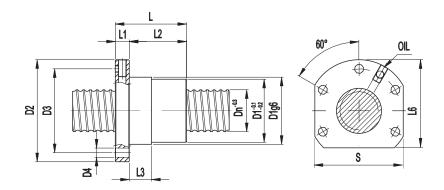
05


Velocità limite de	l sistema vite-madre\	vite: $n \times Dn \le 90000$	(n = giri/min I)	Dn = diametro nominale)

	N 0	Dn	Passo	N° Circ.		DIA	MET	R0 m	m		S		L	UNG	HEZZ	A mr	n		CARIC	0 DaN	Rd DaN/	Oil	
	T E	mm	mm	sfere	D1g6	D2	D3	D4	D5	D8	mm	L	L1	L2	L3	L4	L5	L6	Cd	Cs	μM	Oit	
06	A 12	32	5	3+3	45	69	58	6x6,6	-	-	-	62	10	52	16	-	-	-	1882	3650	118	M6	218
07																							
08	A	32	5	4+4	48	73	60	6x6,6	-	55	-	79	12	67	16	-	-	-	2412	4868	148	M6	153
09	B	32	5	4+4	48	73	60	4x6,6	-	55	52	79	12	67	16	-	-	-	2412	4868	148	M6	219
10	B 12/15	32	10	3+3	50	80	65	4x8,7	-	65	54	85	14	71	16	-	-	-	1879	3681	116	M6	279

(12) - Senza foro olio frontale flangia

(15) - Foro olio sottoflangia ø4

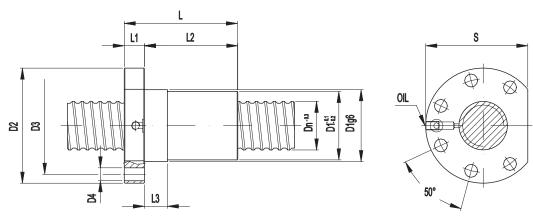


	N 0	Dn	Passo	N° Circ.		DI	AME ⁻	ΓR0 n	nm		S		L	UNG	HEZZ	A mr	n		CARIC	0 DaN	Rd DaN/	Oil	
	T E	mm	mm		D1g6	D2	D3	D4	D5	D6	mm	L	L1	L2	L3	L4	L5	L6	Cd	Cs	μm	Oit	
01	A	32	5	4+4	48	73	58	6x6,6	-	58	-	79	12	67	15	-	-	-	2412	4868	148	M6	221
02	B 18	32	5	3+3	50	80	65	6x9	-	50	79	64	12	52	10	-	-	-	1882	3650	118	М6	245
03																							

(18) - Foro olio frontale su flangia M4 interasse ø50 NON passante

04

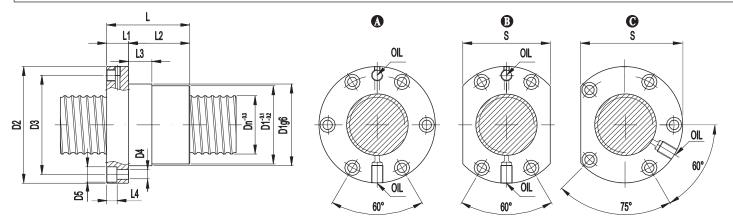
0910


Velocità limite del sistema vite-madrevite: $n \times Dn \le 90000$ (n = giri/min Dn = diametro nominale)

	N 0	Dn	Passo	N° Circ.		DIA	MET	R0 m	m		S		L	.UNG	HEZZ	'A mr	n		CARIC	0 DaN	Rd DaN/	Oil	
	T E	mm	mm	sfere	D1g6	D2	D3	D4	D5	D6	mm	L	L1	L2	L3	L4	L5	L6	Cd	Cs	μM	Oit	
06		32	5	4+4	48	73	60	5x6,6	-	-	65	79	12	67	16	-	-	63	2412	4868	148	M6	220
07																							
08																							

(12) - Senza foro olio frontale flangia

(15) - Foro olio sottoflangia ø4

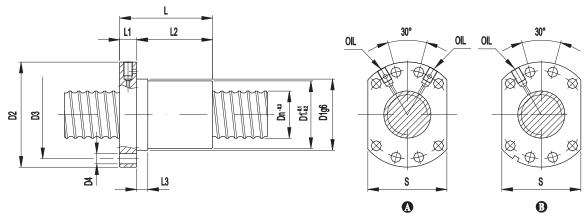


	N 0	Dn	Passo	N° Ciro		DI	AMET	R0 n	nm		S		L	.UNG	HEZZ	'A mr	n		CARIC	0 DaN	Rd	Oil	
	T E	mm	mm	Circ. sfere	D1g6	D2	D3	D4	D5	D6	mm	L	L1	L2	L3	L4	L5	L6	Cd	Cs	DaN/ μm	Oil	
01	7	32	6	3+3	50	80	65	6x9	-	-	71	74	14	60	16	-	-	-	1883	3651	80	M6	152

04 05

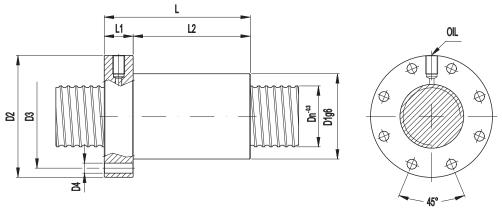
02

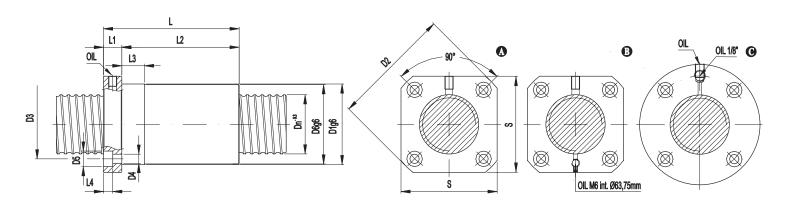
(7) - Foro olio sottoflangia ø4 - lamatura ø9, profondità 1,4 mm


Velocità limite del sistema vite-madrevite: n x Dn \leq 90000 (n = giri/min Dn = diametro nominale)

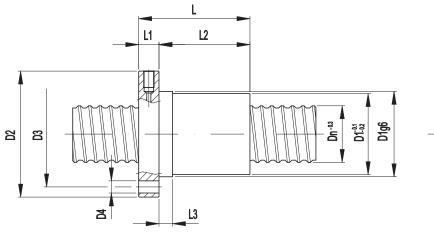
	N 0	Dn	Passo	N° Circ.		DIA	MET	R0 m	m		S		L	UNG	HEZZ	A mr	n		CARIC	0 DaN	Rd DaN/	Oil	
	T E	mm	mm	sfere	D1g6	D2	D3	D4	D5	D6	mm	L	L1	L2	L3	L4	L5	L6	Cd	Cs	μM	Oit	
06	0	32	5	4+4	50	78	63	5x6,6	10,5	-	69	82	15	67	16	6	-		2412	4868	148	8x1	222
07	A 1/13	40	5	4+4	56	80	68	6x6,6	10,5	-	-	82	15	67	16	7	-	-	2649	6123	177	8x1	154
80	B 1/13	40	5	4+4	56	80	68	4x6,6	10,5	-	60	82	15	67	16	7	-	-	2649	6123	177	8x1	155
09	A 1	50	5	4+4	68	98	82	6x9	13,5	-	-	82	15	67	16	8,5	-	-	2898	7690	217	8x1	156
10	B	50	5	4+4	68	98	82	4x9	13,5	-	80	82	15	67	16	8,5	-	-	2898	7690	217	8x1	230

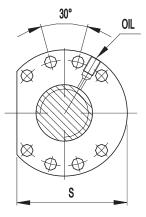
(1) - Disponibile anche con passo sinistrorso


(13) - Interasse foro olio su flangia ø63


								*0100	ita tiii	iico docc	100011	u vito	muui	OVICO.	11 X D1	1 _ 700	000 (11	- 91117	ווט וווווו	- didiffici	10 110111	mato	
	N 0	Dn	Passo	N° Circ.		DI	AME	ΓR0 n	nm		S		L	UNG	HEZZ	A mr	n		CARIC	0 DaN	Rd DaN/	Oil	
	T E	mm	mm	sfere	D1g6	D2	D3	D4	D5	D6	mm	L	L1	L2	L3	L4	L5	L6	Cd	Cs	μM	Oit	
01	A 21	40	5	4+4	63	93	78	8x9	-	-	70	82	15	67	10	-	-	-	2649	6123	177	8x1	580
02																							
03	B	40	12	4+4	63	93	78	8X9	-	-	70	152,5	20	132,5	16	-	-	-	5980	11099	182	8x1	229
04																							

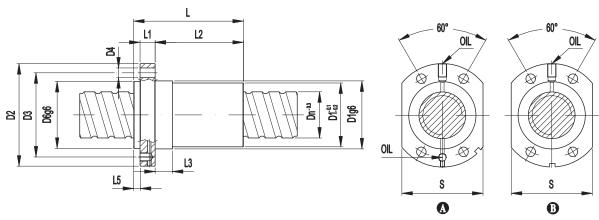
(²¹) - Foro olio sottoflangia ø4 - interasse ø78

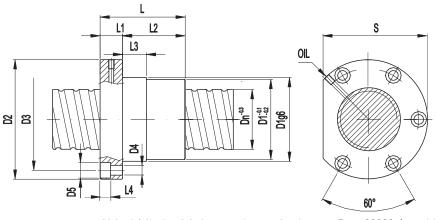

							\	<u>/elocità</u>	ilimit	<u>e del s</u>	<u>sistem</u>	<u>a vite-</u>	madr	evite:	n x Dr	າ ≤ 900)00 (n	= giri	min Dn/	= diamet	tro nom	<u>inale)</u>	
	N 0	Dn	Passo	N° Circ.		DIA	MET	R0 m	m		S		L	UNG	HEZZ	A mn	n		CARIC	O DaN	Rd DaN/	Oil	
	T E	mm	mm	sfere	D1g6	D2	D3	D4	D5	D6	mm	L	L1	L2	L3	L4	L5	L6	Cd	Cs	μm	Uit	
06		40	6	4+4	56	79,5	68	8x6,6	-	-	-	96	19	77	-	-	-	-	2649	6123	168	8x1	201
07																							
08																							
09																							
10																							



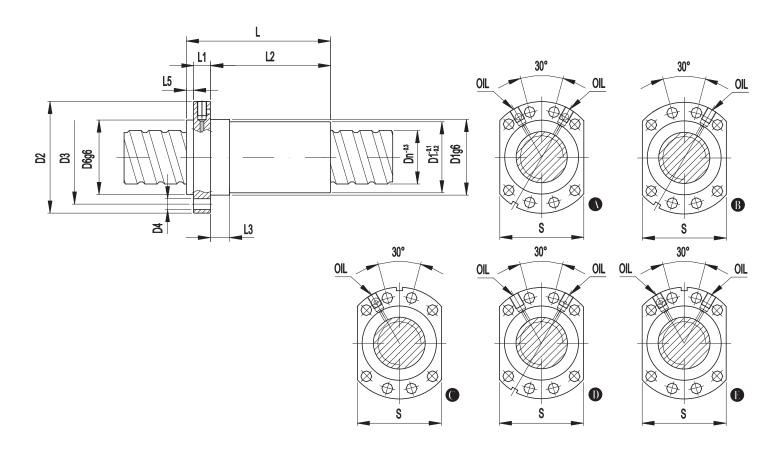
Velocità limite del s	sistem	a vite-madrevite:	n x Dn	≤ 90000	(n = giri/	mın	Dn = diamet	ro nom	ınale)	

	N 0	Dn	Passo	N° Circ.		DI	AME ⁻	ΓR0 m	nm		S		L	UNG	HEZZ	'A mn	n		CARIC	0 DaN	Rd DaN/	Λil
	T E	mm	mm	sfere	D1g6	D2	D3	D4	D5	D6g6	mm	L	L1	L2	L3	L4	L5	L6	Cd	Cs	μm	Oit
01	A	40	6	4+4	57	85	69	4x6,6	11	56	68	96	13	83	16	6,6	-	-	2649	6123	168	M6
02																						
03	B	40	10	3+3	62	98	77	4x10,5	16,5	-	75,5	126	26	100	-	11	-	-	4673	8324	148	8x1
04	0	40	10	4+4	62	98	77	4x10,5	16,5	-	-	145	26	119	-	11	-	-	5985	11099	187	8x1
05																						




١	Velocita	à limit	e del :	sistem	ıa vite	-madr	evite:	n x	Dn:	≤ 900	00 ((n = gir	i/min	Dn :	= diame	tro nom	iinale)	
																		1

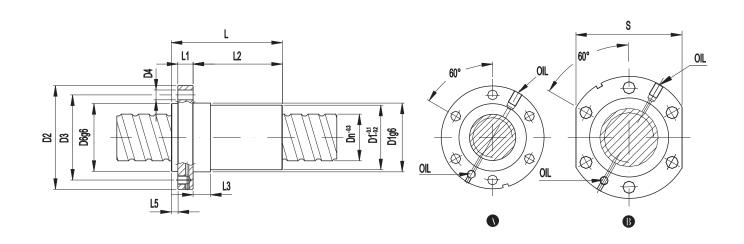
	N 0	Dn	Passo	N° Circ.		DIA	AMET	R0 m	m		S		L	.UNG	HEZZ	'A mr	n		CARIC	0 DaN	Rd DaN/	Oil	
	T E	mm	mm	sfere	D1g6	D2	D3	D4	D5	D6	mm	L	L1	L2	L3	L4	L5	L6	Cd	Cs	μm	Oit	
06		40	6	4+4	63	90	78	8x9	-	-	79	96	16	80	16	-	-	-	2649	6123	168	1/8 GAS	225
07																							


	N 0	Dn	Passo	N° Circ.		DI	AMET	ΓRO n	nm		S		L	UNG	HEZZ	'A mr	n		CARIC	0 DaN	Rd DaN/	Oil
	T E	mm	mm	sfere	D1g6	D2	D3	D4	D5	D6	mm	L	L1	L2	L3	L4	L5	L6	Cd	Cs	μM	Oit
01	A	40	10	3+3	63	95	78	4x9	-	62	75	120	14	100	16	-	6	-	4673	8324	148	8x1
02																						
03	B	50	10	4+4	72	110	90	4x11	-	72	80	151,5	16	128,5	16	-	7	-	6640	13946	236	8x1
04																						

Velocità limite del sistema vite-madrevite: n x Dn \leq 90000 (n = giri/min Dn = diametro nominale)

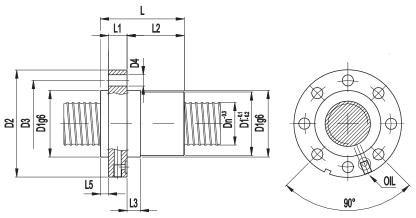
	N 0	Dn	Passo	N° Circ.		DIA	MET	R0 m	m		S		L	UNG	HEZZ	'A mr	n		CARIC	0 DaN	Rd DaN/	Oil
	T E	mm	mm	sfere	D1g6	D2	D3	D4	D5	D6	mm	L	L1	L2	L3	L4	L5	L6	Cd	Cs	μm	Oit
06		40	10	4+4	63	98	78	5x8,5	13,5	-	88,5	137	18	119	15	8	-	-	5985	11099	187	M5 :
07																						
08																						
09																						
10																						
-																						

			r					Veloc	ità lin	nite del s	sistem	a vite-	madr	evite:	n x Dr	n ≤ 901	000 (n	= giri	/min Dn	= diame	tro nom	inale)	1
	N 0	Dn	Passo	N° Circ.		DI	AME ⁻	TR0 r	nm		S		L	UNG	HEZZ	A mr	n		CARIC	0 DaN	Rd DaN/	Oil	
	T E	mm	mm	sfere	D1g6	D2	D3	D4	D5	D6	mm	L	L1	L2	L3	L4	L5	L6	Cd	Cs	μm		
26	A 15	40	5	5+5	63	93	78	8x9	-	63	70	97	15	75	10	-	7	-	3311	7563	221	8x1	516
25	A 15	40	5	6+6	63	93	78	8x9	-	63	70	109	15	87	10	-	7	-	3775	9184	265	8x1	614
01	A 15	40	10	3+3	63	93	78	8x9	-	63	70	120	14	100	16	-	6	-	4673	8324	148	8x1	158
02	A 15	40	10	4+4	63	93	78	8x9	-	62	70	139	14	119	16	-	6	-	5985	11099	187	8x1	159
03																							
04	© 10	50	5	4+4	75	110	93	8x11	-	75	85	90	16	67	21	-	7	-	2898	7690	217	8x1	160
22	B 10	50	5	5+5	75	110	93	8x11	-	75	85	97	16	74	21	-	7	-	3355	9427	268	8x1	308
23	B 10	50	5	6+6	75	110	93	8x11	-	75	85	109	16	86	21	-	7	-	4107	11536	315	8x1	416
24																							
05	D 14	50	10	4+4	75	110	93	8x11	-	75	85	151,5	16	128,5	16	-	7	-	6640	13946	236	8x1	161
07	D 11	63	10	4+4	90	125	108	8x11	-	90	95	152	18	127	16	-	7	-	7335	17645	284	8x1	162
27	B	63	10	5+5	90	125	108	8x11	-	90	95	172	18	147	16	-	7	-	8887	22057	353	8x1	515
28																							

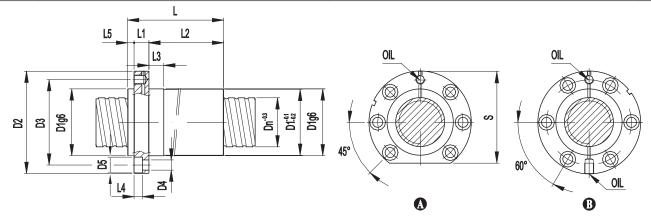

^{(10) -} Foro olio sottoflangia ø3 interasse ø93 - Lamatura ø8 prof. 1,1

^{(11) -} Senza foro olio sottoflangia

^{(14) -} Foro olio sottoflangia ø3


^{(15) -} Foro olio sottoflangia ø4

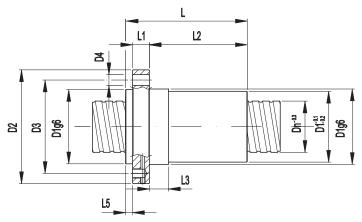
_			1					Veloc	ità lin	nite del s	sistem	a vite-	madr	evite:	n x Dı	n ≤ 900	000 (n	ı = giri.	/min Dn	= diame	tro nom	<u>inale</u>)
	N 0	Dn	Passo	N° Circ.		DI	AME ⁻	TRO n	nm		S		L	UNG	HEZZ	'A mr	n		CARIC	0 DaN	Rd DaN/	Oil	
	T E	mm	mm	sfere	D1g6	D2	D3	D4	D5	D6	mm	L	L1	L2	L3	L4	L5	L6	Cd	Cs	μm		
06	A	40	10	3+3	63	95	78	6x9	-	62	-	120	14	100	16	-	6	-	4673	8324	148	8x1	163
07	A	40	10	4+4	63	95	78	6x9	-	62	-	139	14	119	16	-	6	-	5985	11099	487	8x1	164
08																							
09	B	50	10	4+4	72	110	90	6x11	-	72	96	152	16	129	16	-	7	-	6640	13946	236	8x1	16
10																							
11																							
12																							
13																							
14																							
15																							
16																							
17																							
18																							
Γ]

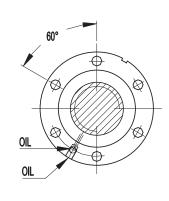

	N 0	Dn	Passo	N° Circ.		DI	AME	ΓRO n	nm		S		L	UNG	HEZZ	'A mr	n		CARIC	0 DaN	Rd DaN/	Oil
	T E	mm	mm	sfere	D1g6	D2	D3	D4	D5	D6	mm	L	L1	L2	L3	L4	L5	L6	Cd	Cs	μM	Oit
01	20	50	5	4+4	75	110	93	8x11	-	-	-	90	16	67	21	-	-	-	2898	7690	217	8x1 ³

03

05

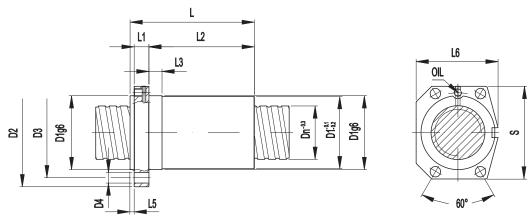
02


(20) - Lamatura Ø8H11 profondità 1,1 foro olio Ø3 interasse Ø93



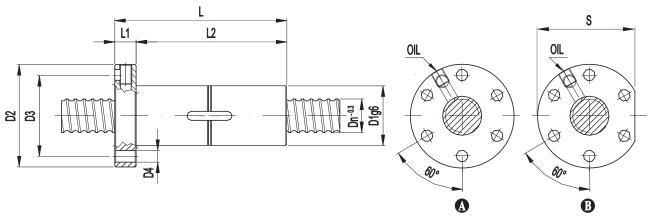
Velocità limite del sistema vite-madrevite: n x $Dn \le 90000$ (n = giri/min Dn = diametro nominale)

	N O	Dn	Passo	N°		DIA		R0 m		o dot e	S	The vice		UNG				9117	CARIC	o DaN	Rd		
	T E	mm	mm	Circ. sfere	D1g6	D2	D3	D4	D5	D6	mm	L	L1	L2	L3	L4	L5	L6	Cd	Cs	DaN/ μm	Oil	
09	B	50	5	6+6	68	98	82	6x8,5	13,5	-	-	109	15	87	16	8.5	7	-	4107	11536	315	8x1	453
10																							
06	A	50	10	4+4	72	110	92	6x11	17	-	99	151,5	16	128,5	16	9	7	-	6640	13946	236	1/8 GAS	234
07																							



Valonità limita da	I sistema vite-madrevite: n	$\sqrt{Dn} = 000000 / n = airi/min$	Dn - diametre neminale)
verocha nimie dei	i sistema vite-mautevite: n	X 1)11 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	100 = 018111911011011111111111111111111111111

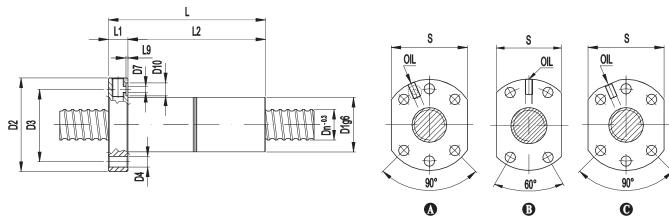
-								¥0100	ita tiiri	ito dot t	310 (0111	u vito	maar	O VICO.	11 / 10	1 - 70	000 (11	- 91117	1111111 1011	- didilio	CI O HOHI	mato,
	N 0	Dn	Passo	N° Ciro		DI	AMET	ΓRO n	nm		S		L	UNG	HEZZ	'A mr	n		CARIC		Rd DaN/	Oil
	T E	mm	mm	Circ. sfere	D1g6	D2	D3	D4	D5	D6	mm	L	L1	L2	L3	L4	L5	L6	Cd	Cs	μm	Oit
01		63	10	4+4	85	125	105	6x11	-	-	-	152	16	129	16	-	7	-	7335	17645	284	8x1 ²
02																						


04

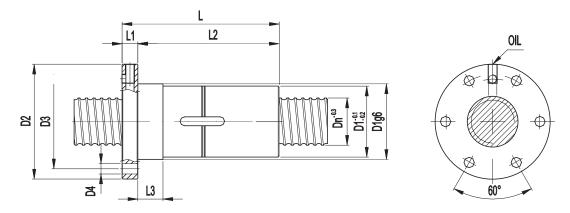
Valagità limita da	I sistema vite-madrevite	$n \times Dn < 00000 /n$	- airi/min Dn	- diametro nominala)
venocha mine de	u sistenna vite-mantevite:	11 X 1 JH > 7 HHIIH HI	= (1111/1111111 1 1 1 1 1 1	= 01ameno nominare)

	N 0	Dn	Passo	N° Circ.		DIA	MET	R0 m	m		S		L	UNG	HEZZ	A mr	n		CARIC	0 DaN	Rd DaN/	Oil
	T E	mm	mm	sfere	D1g6	D2	D3	D4	D5	D6	mm	L	L1	L2	L3	L4	L5	L6	Cd	Cs	μM	Oit
06		63	10	4+4	90	132	110	4x13	-	-	113	151,5	18	128,5	16	-	5	100	7335	17645	284	M10 23
07																						
08																						
09																						

Velocità limite del sistema vite-madrevite: $n \times Dn \le 90000 \ (n = qiri/min \ Dn = diametro nominale)$

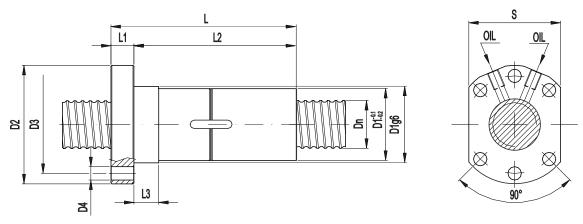

	N 0	Dn	Passo	N° Circ.		DI	AME	ΓR0 n	nm		S		L	.UNG	HEZZ	'A mn	n		CARIC		Rd DaN/	Oil	
	T E	mm	mm	sfere	D1g6	D2	D3	D4	D5	D6	mm	L±1	L1	L2	L3	L4	L5	L6	Cd	Cs	μM	Oit	
01	A	20	5	3+3	33	57,5	45	6x6,6	-	-	-	80	10	70	-	-	-	-	1508	2239	78	M6	10
02	B	20	5	3+3	33	57,5	45	6x6,6	-	-	54,5	80	10	70	-	-	-	-	1508	2239	78	М6	10
กร																							

Velocità limite del s	istema	vite-madrevite:	$n \times Dn \le 900$	00 (n = giri.	min Dn /	= diamet	ro nom	inale))

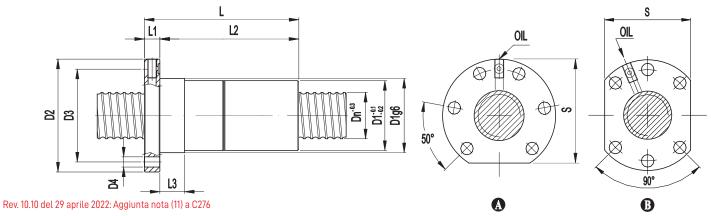

	N 0	Dn	Passo	N° Circ.		DIA	MET	R0 m	m		S		L	UNG	HEZZ	A mr	n		CARIC	0 DaN	Rd DaN/	Oil	
	T E	mm	mm	sfere	D1g6	D2	D3	D4	D5	D6	mm	L±1	L1	L2	L3	L4	L5	L6	Cd	Cs	μm	Oit	
06		20	5	3+3	33	57,5	45	4x6,6	-	-	37	80	10	70	-	-	-	-	1508	2239	78	M6	175
07																							
N8																							

								veloc	ıta tiri	iite det s	sisten	ia vite-	maur	evite:	וע א וו	$1 \geq 900$	וו) טטע	$=$ g_{III}	חט חוווו/	= diame	tro non	<u>imate)</u>	,
	N 0	Dn	Passo	N° Circ.		DI	AME ⁷	TRO n	nm		S		L	UNG	HEZZ	'A mn	n		CARIC	0 DaN	Rd DaN/	Oil	
	T E	mm	mm	sfere	D1g6	D2	D3	D4	D7	D10	mm	L±1	L1	L2	L3	L4	L5	L9	Cd	Cs	μm	Oit	
02	A	25	10	3+3	40	62	51	6x6,6	4	9	48	103	12	91	-	-	-	1,3	1678	2827	88	M6	270
12	A 32	25	10	3+3	43	62	51	6x6,6	4	-	48	103	10	93	-	-	-	-	1678	2827	88	M6	421
03	B	25	10	3+3	43	65	55	4x6,6	-	-	45	99	14	85	-	-	-	-	1678	2827	88	M6	176
04	B	25	10	3+3	43	65	55	4x6,6	-	-	45	100	14	86	-	-	-	-	1678	2827	88	М6	271
05																							
06	© 11	25	10	4+4	40	62	51	6x6,6	-	-	48	124	12	112	-	-	-	-	2150	3770	110	М6	331
07	B	25	10	4+4	43	65	55	4x6,6	-	-	45	124	14	110	-	-	-	-	2150	3770	110	M6	272
09	B	25	20	2+2	43	65	55	4x6,6	-	-	45	119	14	105	-	-	-	-	1167	1884	71	M6	177

(11) - Senza foro olio sottoflangia (32) - Foro sottoflangia ø4 SENZA LAMATURA

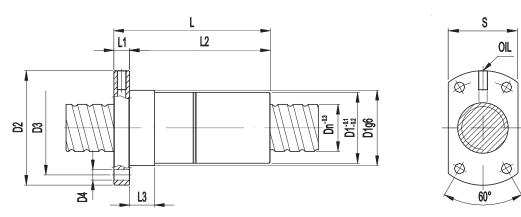


Velocità limite del sistema vite-madrevite: $n \times Dn \le 90000$ (n = giri/min Dn = diametro nominale)

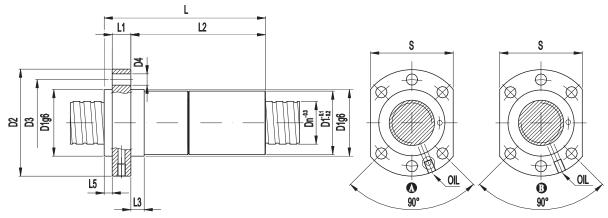

-								V C L U C	ita tiii	iite det i	3131611	ia vite	maui	CVILC.	11 / 1	1 _ 70	000 (1	ı – gii i	ווט וווווו	- ulaille	ti o non	iiiiate)	
	N 0	Dn	Passo	N° Circ.		DI.	AME ⁻	TRO n	nm		S		L	UNG	HEZZ	A mr	n		CARIC	0 DaN	Rd DaN/	Oil	
	T E	mm	mm	sfere	D1g6	D2	D3	D4	D5	D6	mm	L±1	L1	L2	L3	L4	L5	L6	Cd	Cs	μm	Oit	
10	22	32	5	3+3	48	73	60	6x6,6	-	-	-	80	10	70	16	-	-	-	1882	3650	118	M6	172
11	22	32	5	4+4	48	73	60	6x6,6	_	_	-	91	10	81	16	-	_	_	2412	4868	148	М6	173

(²²) - Interasse foro olio su flangia ø55

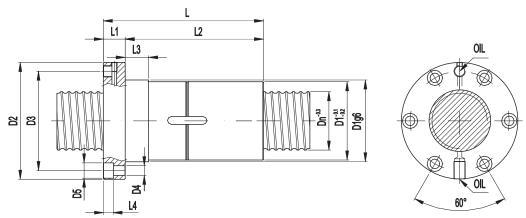
N 0	Dn	Passo	N° Circ.		DI	AME	Veloc FRO n		nite del s	sistem S	na vite		evite: .UNG				n = giri	/min Dn CARIC				
T E	_	mm	sfere	D1g6	D2	D3	D4	D5	D6	mm	L±1	L1	L2	L3	L4	L5	L6	Cd	Cs	μm	Oit	
	32	5	4+4	50	80	65	6x9	-	-	62	93	12	71	10	-	-	-	2412	4868	148	M6	180



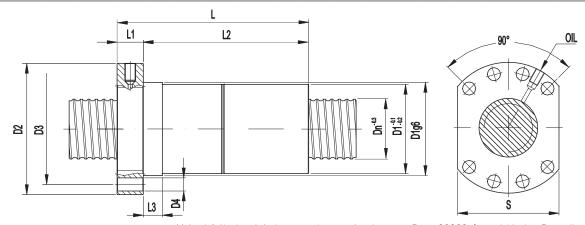
Velocità limite del sistema vite-madrevite: $n \times Dn \le 90000$ (n = giri/min Dn = diametro nominale)


	N 0	Dn	Passo	N° Circ.		DIA	MET	R0 m	m		S		L	.UNG	HEZZ	'A mn	n		CARIC	0 DaN	Rd DaN/	Oil	
	T E	mm	mm	sfere	D1g6	D2	D3	D4	D5	D6	mm	L±1	L1	L2	L3	L4	L5	L6	Cd	Cs	μm		
06	A 7	32	6	5+5	50	80	65	6x9	-	-	71	122	12	110	16	-	-	-	3015	6085	163	M6	236
07	B 7	32	6	5+5	50	80	65	6x9	-	-	62	122	12	110	16	-	-	-	3015	6085	163	М6	237
08																							
09	B 11	32	10	4+4	50	80	65	6x9	-	-	62	124	14	110	16	-	-	-	2505	4868	155	M6	276
10	A 7	32	10	4+4	50	80	65	6x9	-	-	71	124	14	110	16	-	-	-	2505	4868	155	M6	238

^{(7) -} Foro olio sottoflangia ø4 - lamatura ø9 profondità 1,4 (11) - Senza foro olio sottoflangia

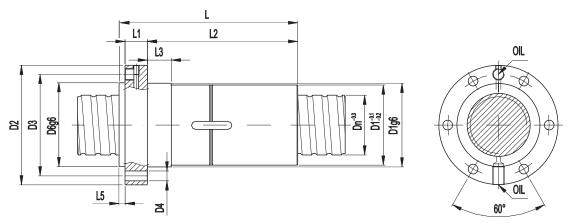

								Veloc	ità lim	nite del	sistem	na vite	-madr	evite:	n x D	n ≤ 90	000 (r	ı = giri	/min Dn	= diame	tro nom	inale))
	N 0	Dn	Passo	N° Circ.		DI	AME ⁻	TRO n	nm		S		L	UNG	HEZZ	A mr	n		CARIC	0 DaN	Rd DaN/	Oil	
	T E	mm	mm	sfere	D1g6	D2	D3	D4	D5	D6	mm	L±1	L1	L2	L3	L4	L5	L6	Cd	Cs	μm	Oit	
01		32	10	3+3	50	80	65	4x8,7	-	-	54	103	14	89	16	-	-	-	1879	3651	116	M6	275
02		32	10	4+4	50	80	65	4x8,7	-	-	54	124	14	110	16	-	-	-	2505	4868	155	M6	277
03		32	20	2+2	50	80	65	4x8,7	-	-	54	119	14	105	16	-	-	-	1314	2434	90	M6	179
04		32	25	2+2	50	80	65	4x8,7	-	-	54	139	14	125	16	-	-	-	1351	2516	92	М6	564

							١	/elocita	à limit	e del s	sistem	a vite-	madr	evite:	n x Dı	n ≤ 900	000 (n	= giri	/min Dn	= diame	tro nom	inale))
	N 0	Dn	Passo	N° Circ.		DIA	AMET	R0 m	m		S		L	UNG	HEZZ	'A mn	n		CARIC	0 DaN	Rd DaN/	Oil	
	T E	mm	mm	sfere	D1g6	D2	D3	D4	D5	D6	mm	L±1	L1	L2	L3	L4	L5	L6	Cd	Cs	μm	Oit	
06	B	32	10	3+3	50	80	65	6x9	-	-	62	109	14	89	10	-	6	-	1879	3651	116	M6	289
07	B	32	10	4+4	50	80	65	6x9	-	-	62	130	14	110	16	-	6	-	2505	4868	155	М6	280
08	B	32	10	5+5	50	80	65	6x9	-	-	62	154	14	134	16	-	6	-	3130	6085	193	M6	324
09	A 7	32	12	4+4	50	80	65	6x9	-	-	62	152	14	132	10	-	6	-	2505	4868	155	М6	287
10																							


(7) - Con foro olio sottoflangia ø4 - lamatura ø9 profondità 1,4

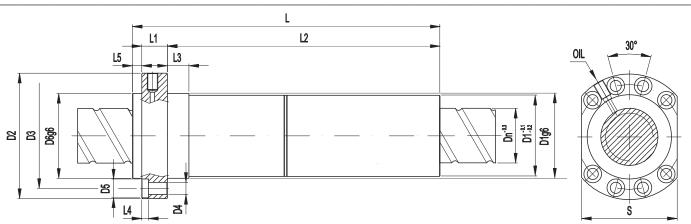
								Veloc	<u>ità lim</u>	ite del s	sistem	a vite	-madr	evite:	n x Di	n ≤ 90	<u>000 (n</u>	= giri.	/min Dn	= diame	tro nom	<u>ıinale)</u>	-
	N 0	Dn	Passo	N° Circ.		DI	AME ⁻	ΓRO n	nm		S		L	UNGI	HEZZ	A mr	n		CARIC	0 DaN	Rd DaN/	Oil	
	T E	mm	mm	sfere	D1g6	D2	D3	D4	D5	D6	mm	L±1	L1	L2	L3	L4	L5	L6	Cd	Cs	μM	Oit	
01	1	40	5	4+4	56	80	68	6x6,6	10,5	-	-	97	15	82	16	7	-	-	2649	6123	177	8x1	189
02		40	5	6+6	56	80	68	6x6,6	10,5	-	-	117	15	102	16	7	-	-	3755	9184	265	8x1	190
03																							
04		50	5	6+6	68	98	82	6x8,5	13,5	-	-	117	15	102	16	8,5	-	-	4107	11536	315	8x1	191
05																							

(1) - Disponibile anche con passo sinistrorso

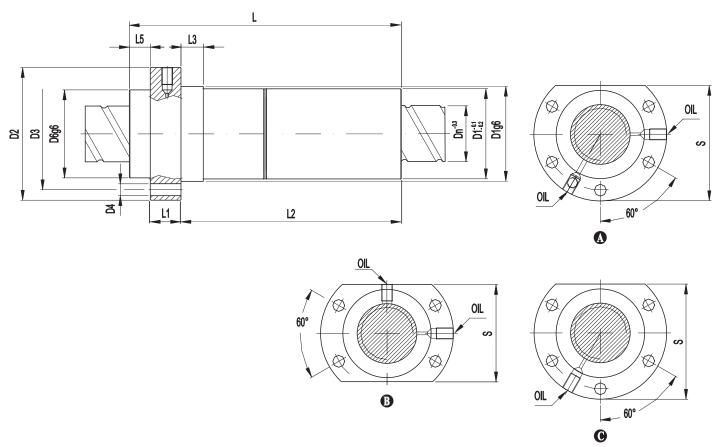

Velocità limite del sistema vite-madrevite: $n \times Dn \le 90000 \ (n = giri/min \ Dn = diametro nominale)$

	N 0	Dn	Passo	N° Circ.		DIA	AMET	R0 m	m		S		L	UNG	HEZZ	A mn	n		CARICO		Rd DaN/	Oil	
	T E	mm	mm	sfere	D1g6	D2	D3	D4	D5	D6	mm	L±1	L1	L2	L3	L4	L5	L6	Cd	Cs	μm	Oit	
07		40	6	6+6	63	93	78	8x9	-	-	70	143	15	128	16	-	-	-	3755	9184	265	8x1	240
08																							

(⁷) - Foro olio sottoflangia ø4 - lamatura ø9 profondità 1,4

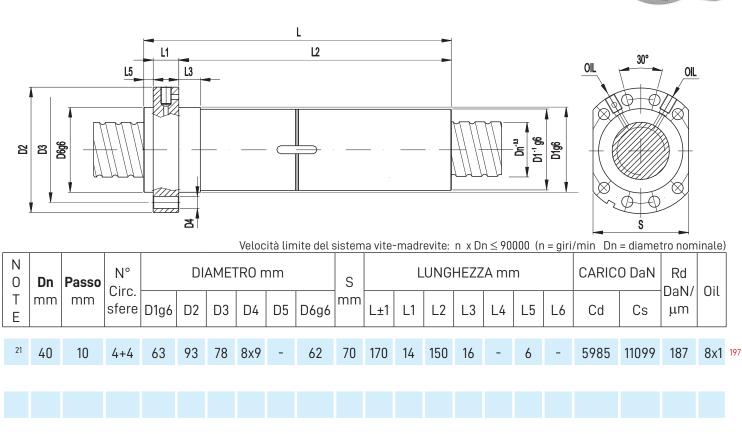

09

Velocità limite del sistema vite-madrevite: $n \times Dn \le 90000 \ (n = giri/min \ Dn = diametro nominal$	Velocità limite d	del sistema vite-madrevite:	$n \times Dn \le 90000$	(n = qiri/min)	Dn = diametro nominale
---	-------------------	-----------------------------	-------------------------	----------------	------------------------


								veloc	ita tim	ite det s	sistem	a vite-	·maar	evite:	ח א ח	n <u>≤ 90</u> 0	<u> 100 (n</u>	= giri.	חט חוחי/	= alame	ro nom	mate)	1
	N 0	Dn	Passo	N° Circ.		DI	AME7	TR0 m	ım		S		L	.UNGI	HEZZ	'A mn	n		CARIC	0 DaN	Rd DaN/	Oil	
	T E	mm	mm		D1g6	D2	D3	D4	D5	D6	mm	L±1	L1	L2	L3	L4	L5	L6	Cd	Cs	μm	Oit	
01		40	10	3+3	63	95	78	6x9	-	62	-	160	14	140	16	-	6	-	4673	8324	148	8x1	192
02		40	10	4+4	63	95	78	6x9	-	62	-	182	14	162	16	-	6	-	5985	11099	187	8x1	193
03																							
04		50	10	6+6	72	110	90	6x11	-	72	-	245	16	222	16	-	7	-	9411	20919	343	8x1	195
05																							

Velocità limite del sistema vite-madrevite: $n \times Dn \le 90000 \quad (n = giri/min \quad Dn = diametro nominale)$

	N 0	Dn	Passo	N° Circ.		DIA	AMET	R0 m	m		S		L	.UNG	HEZZ	A mr	n		CARIC	0 DaN	Rd DaN/	Oil	
	T E	mm	mm	sfere	D1g6	D2	D3	D4	D5	D6	mm	L±1	L1	L2	L3	L4	L5	L6	Cd	Cs	μM	Oit	
07		40	20	3+3	63	93	78	8x9	14	63	71	200	17	176	16	3	7	-	4648	8324	130	8x1	290
08																							
09																							
10																							

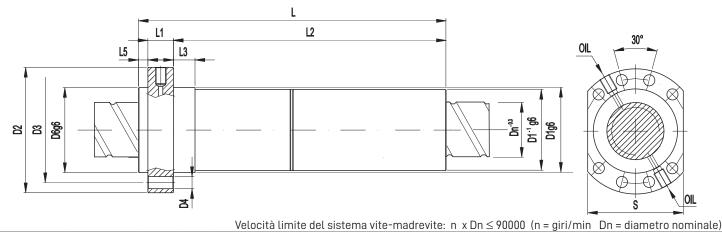


Velocità limite del sistema vite-madrevite: $n \times Dn \le 90000 \quad (n = giri/min \quad Dn = diametro nominale)$ Ν N° DIAMETRO mm CARICO DaN LUNGHEZZA mm Rd 0 Passo S Dn Oil Circ. DaN/ Τ mm mm mm sfere D1g6 D6g6 D2 D3 D5 L2 L3 D4 L1 L4 L5 L6 Cd Cs μm L±1 Ε A1 40 20 3+3 68 95 80 5x8,5 63 82,5 208 22 169 16 15 4648 8324 130 8x1 291 B 40 20 3+3 68 95 80 4x8,5 63 70 208 22 169 16 15 4648 8324 130 8x1 294 02 03 A 40 20 3+3 68 95 82 5x8,5 63 82,5 208 22 169 16 15 4648 8324 130 8x1 293 04 68 63 10 B 40 20 3+3 95 82 4x8,5 70 208 22 169 16 15 4648 8324 130 8x1 295 05 **(**) 22 40 40 95 63 82,5 232 3211 5549 100 8x1 188 2+2 68 80 5x8,5 197 16 13 07 08 09 10 11 12 13 14

(1) - Disponibile anche con passo sinistrorso

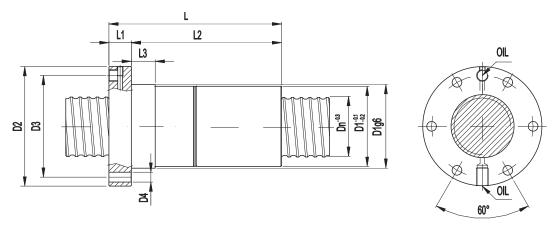
(²¹) - Foro olio sottoflangia ø4 - interasse ø78

01

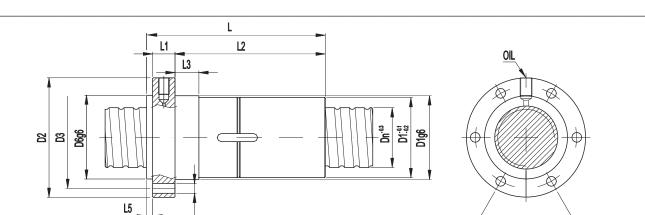

02030405

06

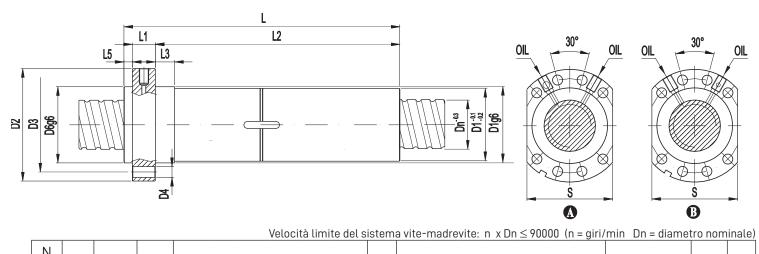
07


08

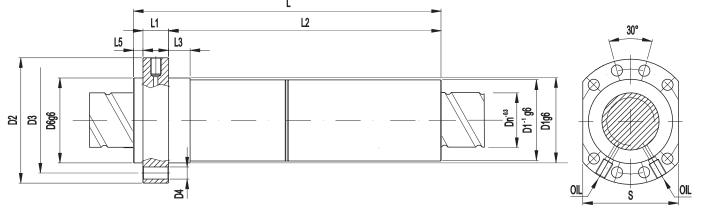
09

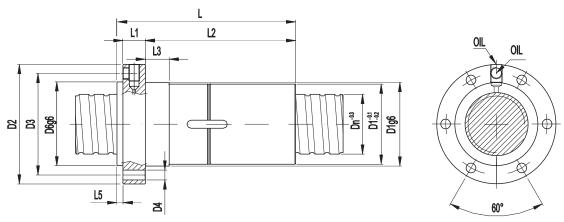

Ν N° DIAMETRO mm LUNGHEZZA mm CARICO DaN Rd0 **Passo** S Dn Circ. DaN/ Oil Τ mm mm mm sfere D1g6 D2 D3 D4 D5 D6g6 L2 L3 L4 L5 Cd Cs μm L±1 L1 L6 Ε 40 20 3+3 95 78 8x9 208 22 15 4648 8324 130 8x1 202 68 63 70 171

Velocità limite del	l sistema vite-madrevite: n	$x Dn \le 90000 (n = giri/min)$	Dn = diametro nominale)
---------------------	------------------------------	---------------------------------	-------------------------

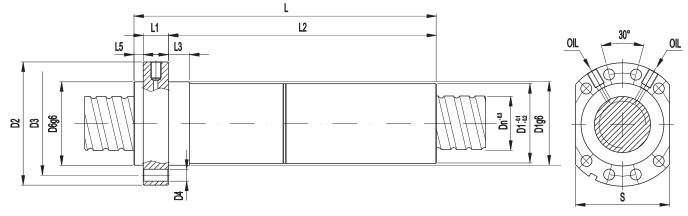

	N 0	Dn	Passo	N° Circ.		DI	АМЕТ	TRO n	nm		S		L	UNG	HEZZ	'A mr	n		CARIC	O DaN	Rd DaN/	Oil	
	T E	mm	mm	sfere	D1g6	D2	D3	D4	D5	D6g6	mm	L±1	L1	L2	L3	L4	L5	L6	Cd	Cs	μm	Oit	
01		50	5	4+4	68	98	82	6x9	-	-	-	97	15	82	16	-	-	-	2898	7690	217	8x1	24
02																							

 $\label{eq:velocita} \mbox{Velocita limite del sistema vite-madrevite: } \mbox{ } \$


	N 0	Dn P	Passo	N° Circ. sfere		DI	AMET	ΓR0 m	ım		S		L	UNGH	HEZZ	A mn		CARIC		Rd DaN/	Oil		
	T E	mm	mm		D1g6	D2	D3	D4	D5	D6g6	mm	L±1	L1	L2	L3	L4	L5	L6	Cd	Cs	μm	Oit	
06		50	10	3+3	72	110	90	6x11	-	72	-	153	16	130	16	-	7	-	5185	10459	176	8x1	194
07																							
08																							

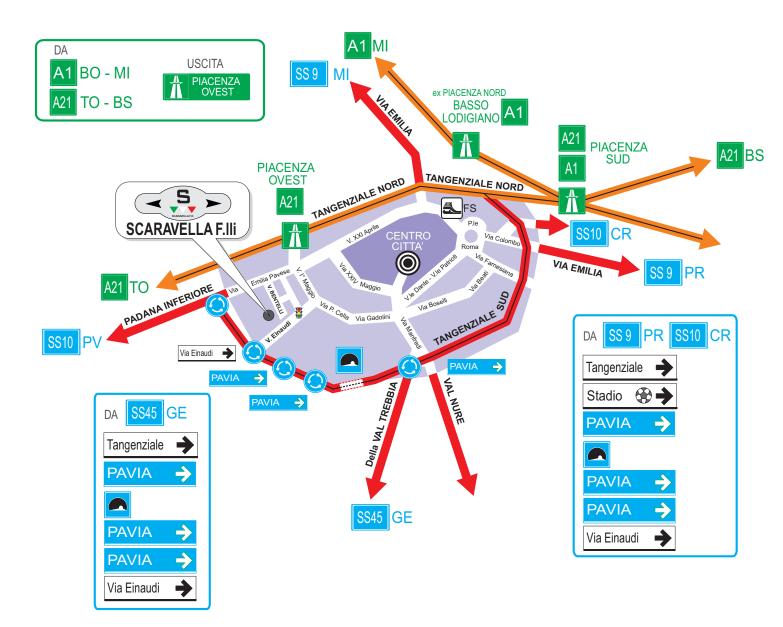

	0	Dn		N° Circ.	DIAMETRO mm							LUNGHEZZA mm CARICO DaN									Rd DaN/	Oil	
	T E	mm		sfere	D1g6	D2	D3	D4	D5	D6g6	mm	L±1	L1	L2	L3	L4	L5	L6	Cd	Cs	μM	Oit	
20	A 33	50	5	6+6	75	110	93	8x11	-	75	85	125	16	102	16	-	7	-	4107	11536	315	8x1	403
21																							
01	B 14	50	10	4+4	75	110	93	8x11	-	75	85	171	16	148	16	-	7	-	6649	13946	236	8x1	251

(14) - Foro olio sottoflangia ø3 (33) - Foro olio sottoflangia ø5



Velocità limite del sistema vite-madrevite: $n \times Dn \le 90000$ (n = giri/min Dn = diametro nominale) Ν N° DIAMETRO mm CARICO DaN LUNGHEZZA mm Rd S Dn **Passo** Circ. DaN/ Oil Τ mm mm mm sfere D1g6 μm D2 D3 D4 D5 D6g6 L1 L2 L3 L5 L6 Cd L±1 L4 Cs Ε 93 8x11 85 206 3+3 8x1 282 3+3 8x11 8x1 203 4+4 8x11 8x1 204 4+4 8x11 8x1 302 3 + 38x11 8x1 205 4+4 125 108 8x11 100 254 8x1 328

	N 0	Dn Passo		N° Circ.		DI	AME1	ΓR0 n	nm		S	LUNGHEZZA mm CARICO Da								0 DaN	Rd DaN/	Oil	
	T E	mm	mm	sfere	D1g6	D2	D3	D4	D5	D6g6	mm	L±1	L1	L2	L3	L4	L5	L6	Cd	Cs	μm	Oit	
01		63	10	4+4	85	125	105	6x11	-	85	-	171	18	148	16	-	5	-	7335	17645	284	8x1	243
02		63	10	5+5	85	125	105	6X11	-	85	-	200	18	177	16	-	5	-	8887	22057	353	8x1	244
03		63	10	5+5	90	125	108	6x11	-	90	-	202	18	177	16	-	7	-	8887	22057	353	8x1	196
04																							



Velocità limite del sistema vite-madrevite: n x $Dn \le 90000$ (n = giri/min Dn = diametro nominale)

								Ottoortt	2 (1111111	o dot on	ocomia	VICO I	Haaro	vico. ii		_ / 000	00 (11	91117	1111111	- didillo	.10 110111	mato	
	N 0	Dn mm	Passo	N° Circ. sfere		DI	AME1	TR0 m	nm		S	LUNGHEZZA mm CARICO DaN R										Oil	
	T E		mm		D1g6	D2	D3	D4	D5	D6g6	mm	L±1	L1	L2	L3	L4	L5	L6	Cd	Cs	DaN/ μm		
06		63	10	4+4	90	125	108	8x11	-	90	95	171	18	146	16	-	7	-	7335	17645	284	8x1	199
07		63	10	5+5	90	125	108	8x11	-	90	95	202	18	177	16	-	7	-	8887	22057	353	8x1	200
08																							
09																							

DOVE SIAMO

WHERE WE ARE

ANNOTAZIONI